
6809 CODE/MACHINE CODE

Multiple-Precision Addition Here are two pieces of code showing alternative
methods of performing multiple-precision addition
using the stacks. In the first piece of code, the
parameters are placed after the subroutine call. A
typical call to add two four-byte numbers at $100 and
$104, leaving the result at $108 would be:

Length of each number (in bytes)

Address of first number

MPADDAddress of second number

$100

Address of result
4

S104

Save all registers. This
pushes nine bytes onto
the stack

$108
This instruction will load into
U the PC return address

$1000

,U,A,B CC

pushed onto the stack by the
BSR instruction

Treating the data that comes S

c>---after the subroutine call as
though it were a stack, we pull
the addresses of the two

,Unumbers into X and Y, and the
length into B # °/0111111
The address of the result goes

,X+into U

Clear the carry flag

STA,U+--"---Perform the addition of one byte

DECB
to the other, adding with carry

BNELOOP
Store the result

Check if the addition is finished

If
LDU

not, LOOP
LEAU7,UElse get return address and
STU9,Sadd seven to skip over the

seven bytes of parameter:.
PULSPC,U,X,Y,A,B,CCstored after the call

Restore all the registers to the
state that they were in before,
roctnrinn tho Pi. inctoarl nf

The second example performs the same operatior
but pushes parameters

o
nto the stack. The callin

sequence would be:
LDU#$1080

LOX#$100 0

using an extra RTS

LDY#$104

LDA#4 04>Length

PSHSU,X,Y,A0(>Put parameters onto stack

BSRMPADD

ORG$1000

MPADDPSHSX,Y,U,A,B,CC0 .Save all registers
LEAU11,U0..... .Saving the registers takes nine
PULUX,Y,B

bytes, and the return address
.	takes two bytes — a total of

AN DCCV/0111111eleven in all. U now points to

LDA,X+
the parameters

roceed as before
ADCA,Y+

STA,U+

DECB

BNELOOP

PULSPC,U,X,Y,A,B,CC

THE HOME COMPUTER ADVANCED COURSE 659

LOOP

BSR

FCB

FDB

FDB

FDB

ORG

MPADD PSHS

LDU

PULU

LDU

AN DCC

LDA

ADCA

LOOP

Result address

Operand address

111

the 16-bit value at the address currently in S is
loaded into X, and the contents of S are then
incremented by two. The second diagram shows
these changes.

More than one register can be pushed or pulled
at a time. Consider the instruction:

PSHS X,Y,U,A

When more than one register is pushed like this,
the order in which the registers are listed is ignored,
and instead the registers are always pushed in this
order: PC (the program counter register), U or S, Y,
X, DP (the direct page register), B, A and CC (the
condition code register). They will, of course, be
pulled off in the reverse order. The only real
constraint on stack operations is that neither S nor
U can be pushed onto its own stack.

The stacks are used in general programming as
convenient places for fast, temporary storage, but
their major uses come when dealing with
interrupts (more about these later in the course)
and subroutines. We have already seen how the
contents of the program counter register are
automatically pushed onto the stack when a
subroutine is called, and pulled on return from the
subroutine (RTS is equivalent to PULS PC). Either
stack, but particularly S, can also be used to pass
parameters to a subroutine.

The method we have used so far for passing
parameters via the registers (as in the Jump Table
program on page 639) has two major weaknesses.
First of all, there may be more parameters to pass
than there are registers, and, secondly, it can prove
awkward when the routine called uses a register
holding a parameter that you need to retain. There
are, however, two other common techniques for
passing parameters:

1)The data can be stored in the middle of the
program by using FCB, FDB or FCC directives
immediately after the subroutine call. The value of
the program counter register pushed onto the
stack by the JSR instruction gives the address of the
first of these values (since PC always points to the
next byte after the current instruction), and can be
used to obtain all of them, with suitable offsets.
The first example program illustrates this
technique. Care must be taken to arrange the RTS
instruction so that it passes control to a real
instruction, and not to an item of data.
2)The data can be loaded into registers and
pushed onto the stack before the subroutine call,
from which it can be pulled into the subroutine and
used. Care must be taken here that, at the RTS
instruction, the stack pointer will access the
previously stacked PC return address. The second
piece of code illustrates this technique. This is
generally a more useful method than the first.

In both methods, the dual role of S and U as
index registers as well as stack pointers means that
items on the stack can be referenced by indexed
addressing in addition to being easily accessed for
removal from the stack. This makes it easier to
ensure that the correct items are left on the stack
for the return.

