
El

many data moves) and wastes memo ry, so it is
more efficient to leave NewSub$ () unsorted, and
create Index (I instead, Now a new name, Bull, has
to be added to the file, so the arrays look like this:

NewSub$() Index ()

(1) Jones (2)

(2) Atkins m

(3) Carter (3)

(4) Rogers (6)

(5) Smith (1)

(6) Drake (4)

(7) Bull (5)

Notice that the contents of Index () above the new
insertion are unchanged, and its contents below
the insertion are in the same order as previously,
but have all been moved one place down in the
array. Insertion to an index therefore requires:
finding the position of the new element, moving
every element between there and the end of the
index down one, and writing in the new ent ry . This
is preferable to doing the same thing with the
actual data, NewSubS, but is still relatively slow, if
the index is large.

Suppose, now, that we structure the data in a
different way. Leave NewSub$ () unsorted
because manipulating it is slow and expensive, and
establish a parallel array called LookUp (), whose
contents are simply numbers referring to positions
in NewSub$ O.

Li ead(2)

NewSub$() LookUp() Index ()

(1) Jones (4) (2)

(2) Atkins (3) (3)

(3) Carter (6) (6)

(4)
Rogers

(5) (1)
(5) Smith I n (4)

(6) Drake (1) (5)

The first difference is that a simple variable called
L istHead is needed: it points to NewSubS (2) which is
alphabetically the first element of NewSubS (). The
next difference is that the number (0) has been
used in LookUp (5): this indicates that NevvSub$ (5) is
alphabetically the last element of the array.

The next difference is the contents of Index ()
and LookUp (). Index () has to be read: `the first
element is in NewSubS (2), the second is in NewSub$
(3), the third is in NewSubS (6)'...etc. while ListHead
() is read: `the first element is in NewSubS (2); Then
LookUp (2) says that the next element is in NewSub$
(3); LookUp (3) says that the next element is in
NewSubS (6); and so on. Lo^kUp (5) says that
NewSubS (5) is the last element.

Index () gives an absolute position for elements
of the file, while LookUp () gives only relative
positions — any item in LookUp () tells you only
where to find the next element, and says nothing
about absolute position. The number in Index (4)
points to the fourth item in the alphabetically
ordered file, whereas the number in LookUp (4)

points only to the item that comes after NewSubS
(4) in the ordered file. LcokUp () implements the
data structure called a `Linked List'. Reading a
Linked List is like following a treasure hunt: at the
start you're told your first destination; when you
get there you find a clue which points you to your
next destination, and so on. Reading an Indexed
Array is like being on a car rally: at the start you're
told all your destinations and the order in which to
visit them.

The great advantage of the List structure is its
flexibility. Consider the List after insertion of the
new element, Bull:

listHead (2)

NewSub3 () LookUp ()

(1) Jones (4)

(2) Atkins (7)

(3) Carter (6)

(4) Rogers (5)

(5) Smith (0)

(6) Drake (1)

(I) Bull (3)

The array LookUp () has changed in only two
places:

i) LookUp (2), which formerly pointed to NewSubS
(3) as containing the next alphabetic element
after NewSutS (2), now points to NewSubS (7)
since it is now the next alphabetic element after
NewSub$ (2)

ii) LookUp (7), which was unused, now points to
NewSubS(3) as the next item after NewSubS (7)
in the alphabetic ordering.

This illustrates the general process of insertion to a
Linked List: find the element of the list which
should come just before the new element, and
make that element point to the new element; then
make the new element point to the element that it
has displaced. These simple operations will be all
that is required for insertion to a Linked List, and
only the first of these is affected by the size of the
List. Inserting an element to a List is like inse rting
a new link into a chain — decide where to put the
link, break the chain, join the preceding link to the
new one, and the new link to the succeeding link.
Linked Lists are sometimes called Chained Lists.
The numbers in LookUp () — the links — are
sometimes called Pointers.

A striking feature of Lists is their strong
seriality ; it is impossible to find an element in a List
except by starting at the beginning and inspecting
every element until the target is found. The List is
implemented here by using arrays, which are
designed to be Direct Access structures, but the
List has effectively turned them into Sequential
Files. In other languages, such as rise and PASCAL,
the List facility is built-in.

Lists are useful structures for handling dynamic
data (data that regularly changes), and can be
powerful tools when dealing with either natural
language (as in speech recognition) or artificial
language (when compiling programs), where the
data itself naturally forms a list of elements.

THE HOME COMPUTER COURSE 245

