
LINKING INTO
SUpeTBASIC

There are tr{o major topics within this chapter. one topic is that of
SupeTBASIC machine code commands (e.g., CALL, SBYTES, etc.)r and Ehe
second topic is concerned h'ith interfacing machine code procedures andfunctions into SuperBASrc in order to extend the languagä. i,le wil1, for
the present time, look at the theory on1y. The four cÄapiers in part 3
present plenty of real examples on how to do things in practice.

8.1 SupeTBASIC machine code commands

A total of eight procedures and functions exist L,ithin superBASrc to
enable the assembly language programmer to load, save, uno execute
machine code routines. six of the commands are commonly used (i;e.,
CALL, EXEC, SEXEC, LBYTES, SBYTES, and RESpR). The remaining rwo (i...,
PEEK and POKE) exist mainly, it is suggested, for comp1etui"r". None of
the example programs in Part 3 need these last two commands. peeking and
poking, as a dlscipline on the QL, is discouraged (at least be the
author!!). An assembler package should always be used to create, modify,
and generate machine code programs.

Although it may be possible to group the commands into sub-groupsr 4ndthen look at each sub-group, we will deal with the commands in
alphabetical order. This is consistent r+ith the format in previous
chapters, and will make future references easier tasks.

CALL

This is a procedure r+hich will accept an address followed by a maximum
of 13 parameters. The general format of Lhe command is:

CALL addr, pI, g2, ... , pn

The address raddrt is the start address of the machine code to be
executed, and the machine code must exist in the resident procedure area(see RESPR). rf any parameters are supplied they will bä put into the
68000 data and address registers Dl to D7 and A0 to A5, rÄspectively.
For example, if one parameter only is supplied, it will be placed inio
data register D1. rf eight parameters are supplied, the first seven will
go into data registers Dl to D7 respectively, and the eighth will go
into address register A0.

180

No parameters can be returned from a CALL statement. SupeTBASIC will
report the error found in register D0 on return from a called routine.
If no errors occurred in the machine code program, it is advisable to
set D0.L to zero before returning. The CALL procedure is particularly
useful for calling the inltialj-sation routine of a machine code package
to extend SuperBASIC.

EXEC

This is a procedure which is used to invoke an executable code file, or
a sequence of such files. Each executable program will become a separate
QDOS job, and will execute withln the transient program area. Two forms
of the command exist:

EIEC jobl, job2, job3, ... , jobn

Elm_U jobl, job2, job3, ... , jobn

The first form (i.e., EXEC) will invoke the job and return immediately
to SuperBASIC. The second form (i.e., EXEC_W) will invoke the jobs, but
not.return to SupeTBASIC until all the jobs have finished execution. All
the example programs in Chapters 9 and 10 are designed to be executable
code programs and, therefore, invoked by this EXEC command.

LBYTES

Any f11e can be loaded into memory, starting at a specified address,
using this procedure. The general format of the command is:

LBffES device_file, addr

The procedure is most obviously used to load machine code extensj-ons to
SupeTBASIC into the resident procedure area, prior to initialisation and
subsequent use. The parameter raddrt i.s the base address in memory where
the code is to be loaded. Note that this procedure r*ill only load the
file, it will not attempt to run the bytes loaded.

PEEK

This is a function which wj-l1 return the contents of the specified
memory locat.ion. There are three forms, allowing a choice of data size:

value = PF.fr addr

value = PBEK_ll addr

value = PEEI_L addr

181

The flrst of these will return a byte (g-bit) value. The specifiedaddress. may be any address desired. The rast tro
"irr-."aurn a word(i6-bit) and a.long-word- (32-bit) respectively. Both of these latter Lwoforms require raddrt to be an even adäress.

POKE

This is a procedure which will load the specified memory location withthe specified data. There are three forms, allowing a choice of datasize:

POKE addr, data

POKE_tt addr, data

FOKE_L addr, data

The first of these wirr load a byte (B-bit) va1ue. The specified addressmay be anv address desired. The iasr'two wilr road a "".ä-iiÄ_ui.) and along-word (32-bit) respectivery. Both of these latter i*o'io.r" requireraddr? to be an even.adäress. Fär word operacions the memory locations'addrr and raddr+rr-wi11 be u""d, ,irÄ"rhe mosr
"ig"rii;"r'a byre goinglnto raddrt. Long-word operations

"irr u". locations-,aoJri io raddr+3r,
again with the most significant. byte golng into raddrt.

RDSPR

This is a function which is used to reserve space in the residentprocedure area of memory. ft has the general form:

base = RRSpR (space)

The function requires one parameter, specifying the amount of memoryrequired. rf there 1s lnsufficient room in memory to perform therequired allocation, the message rout of memoryr wirl bä Ji"iruy.a andthe function will abort. ThÄ function will ä1so abort,
"iaÄ anu u..o.message fnot completut,

-if any executable programs are in the process ofrunning. on a successful completion, the'fuiction ,iti ."fu.n the baseaddress of the memory area allocated.
Space allocated by RESPR, in the resident procedure area, cannoL bereclaimed (n911grly) wlthour re-booring the machine. rt roiio"" rhat, iftwo or more RESpR functions are executÄd without rntermediaie re_boots,the function will I::p extending the resident procedure area untilmemory is exhausted. Thls enables möre Lhan one b10ck of RAM to beallocated, with each block having its own base address. The blocks willnot overlap.

r82

SBYTDS

This procedure is the lnverse of LBYTES, discussed earlier. The general
form of the command is:

SBYTES device_file, addr, length

The area of memory from raddrr to raddrtlengthr will be saved on the
specified device, and in the specified file.

SEXEC

This is a procedure which will save an area
device, in a form suitable for use with the
procedure. The general form of the statement

of memory, on a specified
SupeTBASIC il(EC (or EXEC_hr)
is:

I
:l
lr

J

t
a

t

SEIEC device file, addr, length, dataspa.ce

It is assumed that the area of memory from taddrr to raddr+lengtht holds
a machine code program. The parameter tdataspacet should specify the
size of the data memory (including stack areas) that will be requlred by
the program when it is executed. Note that you do not save, therefore,
run-time workspace. You save the code only, and specify the size of
run-time workspace required.

8.2 Interfacing to SUpeTBASIC

When we talk of interfacing to SuperBASIC, we are really talking about
extendlng the SupeTBASIC language by the addition of suitably v/ritten
machine code procedures and functions. Actually making SuperBASfC
realise that extra routines (commands or statements) are available is an
almost trlvlal task (see Sec.8.5). Collecting parameters, manipulating
SupeTBASIC variables and channels, and returning results may not be so
easy (though they could not be ca1led onerous).

In order to interface to SupeTBASIC we need Lo knor+ about such things
as the run-time context of our routine (i.e., what pointers exist in
which address registers when entry is made to our routine by
SupeTBASIC), and the structure of the SupeTBASIC work area. The rest of
Ehis chapter 1s dedicated to the theory of interfacing to SuperBASIC.
Chapters 11 and 12 contain some real examples.

8.3 The SupeTBASIC environment

It was shown in Chapter 3 that the whole of t.he SupeTBASIC area can
shift dynamically. This being the case, there must be a pointer
somewhere that informs SupeTBASIC routines where the start of the area
is. All references to the actual program, the variable tables, and so on

183

will then be made relative to that (running) poinEer. In practice, thepointer is address register A6.
on entry to your machine code extenslon, register A6 will ioint to thebase of the SupeTBASIC work- area poinrer räUte (see Fig.g.l). Thispointer table holds vital informätion about il.,. .uiutir"oiositions ofdistinctly separate superBASrc work areas. For .r"rprur- onä of these

1tu?" l: rhe program irself! Each pointer rs a toni-ro.a u.,o irs valueis ltself relative to regi,ster A6. I; other words, tÄe pointers do nothold absolute location values for the work areas.'Th.y;;;;;;n, insread,relatlve offsets to the work areas. Let us 100k at each of these areasin more detail.

BUFFER AREA

This ls exactly whar_the name suggests; a buffer area. A minimum of 12gbytes exist, and routines are freä-to use the area ,"'it.y"
"i"r,. Thetrue length of this area can be determined by subtractir,e tn" bufferarea base poinrer from the poinrer held in tEOAIiOj;,-;.;:;""

move.l bv bfbas(a6),dl ;get base pointerr":".1 $OA("0),dZ
--

;ä"i p"i"t", past topsubq.l ,1,d2 ;(top)sub.l dl,d2 ;i""gin nou in D2

A running pointer (BV-BFP) exists for use as required, within thlsbuffer area. Ir will usually poinr ro rhe firsr f..Ä i...ii.nl

SUPERBASIC PROGRAM AREA

Ihi" is
-slmply the area where the current superBASrc program is he1d.Pointers. BV-PFBAS and BV-pFp poinr to rhe base ä^a it,.-riiä'-t.yond theend of this area respectively.

NAME TABLE

This table is vitally inportant. Each reference to a variable in aSupeTBASIC program isr.internally, a pointer to an entry in the nametab1e. Each entry is eight bytes-1ong, as shown f, pig.Älf.-"

I
{t
i

rf
i

$

184

Low

'lable
pointers

$00 (46)

$04 (A6)

$08 (46)

$ro (A6)

$r.1 (A6)

$18 (,{6)

$1C (A6)

$20 (A.6)

$24 (A6)

$28 (A6)

$2c (,46)

$30 (A6)

$34 (A6)

BV_BFBAS

BV-BFP

Memory

High

Super BASIC variable
FDinter table

Buffer base

Buffer running pointer

Super BASIC program base

Top of Super BASIC program

Name table base

Top of name table

Name list base

Top of name lirt

Variable values base

Top of variable values

Channel table base

Top of channel table

Top of arithmetic stack

Base of arithmetic stäck

Iop of system stack

Bare of system stack

BV_PFBAS

BV_PFP

BV-NTBAS

BV-NTP

BV-NLBAS

BV.NLP

BV_VVBAS

BV_VVP

BV_CHBAS

BV_CHP

BV_RIP

BV_RIBAS

BV-SSP

BV_SSBAS

Stack
pointers

t* Eacl
relal
Each

(A6)
I

{46) [
L

(46r
I

t-(46)
L

is itself

I sre,

.j
ssc r

i*'
I t*'

l pointer l

ive to 46

Figure 8.1 SupeTBASIC pointer table and work areas

185

Description of usage of name:
gql unset string variable
OOO2 unset floating point variableOOO3 unset integer variable
O2Ol srring variable
9?OZ floating poinr variableO2O3 integer variable
91P array substring (internal only)0301 string array
9T? floating point array
9?91 inreger array
04OO SuperBASfC procedure
9:9- SupeTBASIC ,t.iog funcrion
95_9? SuperBAslCfloatingpoini--ron.tion
9:91 SuperBASfC inreger function
ry2 REPEAT loop indäx variable
9!O2 FOR loop index variable
98OO Machine code procedure
O9OO Machine code iunction

l{aoe pointer. This is an offset to the naoein the nane 1ist. A value of _f srgnifiäJ at".the entry is an expression value f;, d;-expression evaluator (in such cases the-byte"0,1 of Ehe nane table enrry "ili-;; öir.i. rr.h: :"try-1: 9 copy of anoiher
"n..y,-ltl ".r"pointer will be a poinrer ro that ";;r;-

]*.:^fi..:r, (long-vord). This is an offset tothe value of the .it.y-(i; d;-.;;."är"iä.i.0r"")or to the descriptor (in the .""" of-.rräy";,fron rhe base of the variabte ;"i";; ä."ä. rrthe.poiqter is_negative, a value t""
""I*U"",assigned yet. It is also used for it.-ii.ofut.pointer to a procedure or function, or-if,e linenuober of a SuperBÄSIC procedur" o. iu".aio.r.

Note that procedures (SuperBASrc or machine code), and machine codefunctions, have no ttyp..t. iup"rnesfC-frn.aron" do have a type, which is
t;:tt"o

by the last-characiu. or in"-runcrion name (i.e.,-none, g, or

NAME LIST

This is a list of the
byce of daLa holdinp
the name.

186

actual names themselves. Each
the character count, followed

name is stored as a
by the characters of

-'._.{

VARIABLE VALUES

This area is a heap area with entries allocated in B-byte blocks. one or
more block allocations are used, depending on the type of the variable.

1. An integer is two bytes 1ong. Normal twors complement format is used.

2. A floatlng point number is stored as a 2-byte offset exponent
followed by a 4-byce mantissa. Examples of floating byte codes äre:

Exponent Hantissa Value
oooo o(no 0000 0.o
0801 4ü)O 0000 1.0
0800 8000 o(no -l.o0804 5ü)o 0000 10.o

3. A strlng will be stored as a word of data, containing the byte count
of the string, followed by the string itself. The actual space taken
by a string will be rounded to the nearest even number.

4. Array descriptors have a long-word header that is the offset of the
array values from the base of the variable values area. Next, there
are the number of dimensions of the array (stored as a word of data),
and then there are pairs of data words for each dimension. The firsttdimension wordr will specify
the maximum index for that
dimension, and the second
word w111 be the index
multl plier
d imension.

for that
The figure

A (0,0)

A (0,1)

A (0,2)

A (1,0)

A (r,l)

opposite shows the layout of
a floating point array. Note
that if the dimens i oning
statement in SupeTBASIC was,
for example,

DrH A(3,2) :
:

the descriptor would have the
format:

dim A (3,2)

base, 2, 3, 3, 2, I

The storage of floating point arrays and integer arrays is entirely
regular. Floating point array elements are six bytes 1ong, anä
integer array elements are thro bytes long.

A string array is regular (i.e., it is an array of standard
strings) except for element zero of the last dimension. The last
dimension of a string array defines the maximum length of the string.
ft will always be rounded up to the nearest uuen ,ruÄber.

Example of anay
storage showing
index multipließ

CHANNEL TABLE

SupeTBASIC channel numbers (#n) are por.nters to the channel r_abl.e. Thtstable is a set of sub-tab1es, one sub-table for each open channel (seeFig.B.2). A sub-rable is 40 ($za) uyt""-iong. r.n" sub-table
"nt.y ro. #nwould therefore be located at:

BV_CIIBÄS(46) + (n x CH.LENCH)

av_cHßAS (A6) (:TLID

CIL(]CPY

C}LCCPX

C]I{_ANGLE

('H_PEN

CH-CHPOS

CH-WIDTH

C'H-SPARF,

Supcr BASIC
+0

Super BASI(i
#l

Figure 8.2 SupeTBASIC channel definition table

Cursor position X

188

ARITI{METIC STACK

The arithmetic stack is the working area for expression evaluation. It
is also used in evaluating ca1l, and return, parameters. It may also be
used as a general working area. Remember that stacks grow downwards
(i.e., from high memory to lower memory).

The SupeTBASIC interface mechanism automatically tidies up the
arithmetic stack after procedure cal1s, and after errors in functions.
On the other hand, a good return from a function must be made with a
tidy stack. The return argument must be on the top of the stack (i.e.,
at the 1ow stack memory end), and no other data must be left below the
argument (i.e., at a physically higher stack memory address). See
Sec.8.l1 a1so.

SYSTEM STACK

This is the area used when any reference is made (implied or otherwise)
to the address register A7. It is, for example, the stack area that will
be used to store the return address for a 68000 rBSRr instruction.

8.4 Implementing machine code procedures

There is a simple set of rules that must be obeyed when writing machine
code extensions to the SupeTBASIC language.

1. It must be remernbered that the whole of the SupeTBASIC area can move,
and therefore all references to t.his area must be relative to address
register A6 (or A7 in the case of stacks). These two address
registers should never be saved for fuEure use (obviously!), used in
arithmetic or address calculations, or altered (except by pushing and
popping on the A7 stack).

2. Not more than 128 bytes may be used on the rusert stack.

3. Data register D0 must be returned r,'/ith an error code (long-word).

0n entry to the routine, SupeTBASIC will have set up, in additj-on to
the above registers, address registers A3 and A5. Any parameters passed
over to the routine will have enEries created for them in the name table
(see Sections 8.3 and 8.6). Register A3 will polnt to the first
parameter entry, and register A5 will point to the end of the last entry
(remember that A3 and A5 are relatlve to A6). The number of parameters
passed over wil1, therefore, be equal to r(A5-A3)/8f. Clearly if A5
equals A3, no parameters were supplied.

Registers Dl to D7, and A0 to A5 may be treated as volatile within the
routine itself (though it would be very unwise to destroy A3 or A5 too
early !) .

189

8.5 Creating name table entries
A simple mechanism exists for the initialization of RAM based extensionsto SuperBASrc. The extensions should be loaded into the residentprocedure area by using the SuperBASrc commands RESpR and LByrES. Forsimpliclty, and the sake of clean source documentationr-ii il'.o.,veni.entto have the initialization code at the very beginning'

"i
-at"

machinecode (though this is not essential).

INITIALIZATTON CODE

The code, and its corresponding tab1e, for theextension routines is very simple. Address register A1the start of the procedure- definition ta61e, and autility rourine Bp.INIT (vecror g110):

:
lea proc_def(pc)ral ;get table address.rnove.y $1l0,a2 ;prepa.e for Bp.II{ITjsr (a2) ;ca1l it.
Eoveq #OrdO ;no error.
rts ;finish.

More than one extension can exist, and the format oftherfore:

I
1

initialization of
should be set to
call made to the

and

the table is

Data size Use

word

word
byte
characters

word
vord

rsord l

byte
Icharacters I

word I

nunber of procedures

(for each procedure):
- pointer to routine
- length of procedure nane
- name of procedure

o
number of functions

(for each funcrion):
- pointer to routine
- length of function nane
- nane of function

o

The number of procedures andfor
internal- table space. If the averagethis number needs t.o be:

190

functions is used purely to reserve
length of the names exceeds seven,

(total no. of characters + nuEber of routines + 7)lg

The pointers to the routines are relative ro the address of t.hepointer. All registers (except Al) are-preserved by the Bp.rNrr utility.
No more than 48 bytes are used on the fuserr stack.

8.6 Parameter initialization
ü/hen a machine code procedure or function is called, an entry will exist
in the name table for each parameter passed over. At tt," end of
executLon, the parameter entries in ihe nam. table wi.l1 b; .;;;"J;
together uith any temporary entrles rnade in the various tables (".g.,
the variable values table).

Name table entries, for call parameters, have the various separators
(e.g., hash, comma, semi-cölon, and so on) masked into the least
significant byte of the description code (i.e., byte l, see Sec.g.3).
The full form of this byte is given by the bit pattern:

bir 7654 32tO, lT---;---ffi;Tl

Bit 7 (thr) will be set if the paramerer was preceded by a hash (#).
Bits 4 to 6 specify the separat.or that follows the parameter:

I

i
ü'

[.

[:
[]
tl
lti

$1

ll

fl

{H
[il

lil
lrl

l1
t:
I

bir
6s4

separator

ofi)
ool
olo
olr
100
lot

no seParator
coua (,)
seri-coLon (;)
back-slash
ercl.ration (!)
the keyrrcrd TO

Bits 0 co 3 specify the rLyper of the parameter, as follows:

bit
32lO

type

moo
o00l
0010
0011

nu11
string
floating point
integer

Note that if an expression ruas passed over as an actual parameter to the

191

cal1, the name pointer in the name table (bytes 2,3 _ see Sec.g.3) willbe set negalive.

8.7 Obtainingarguments

I .":a of four SuperBASrc utility routlnes exist which wirl read anindeterminate number of identical ttyp";-p..ureters. They are u.."""u.in the same way as olher utilitiäs (i'.e., through uuäaor"), and theyhave the followlng vector addresses:

rf a parameter list contalns differenc ttypes" it wirl be necessary tomake multiple cal1s to appropriate routines in order to colfect all 0fthe parameters.
0n entry, the utirties require A3 and 45 to be ser to the base and theLop of the name table parameter entry list respecti";;;. Th" .u"ult"will be placed on the arithmetic stack, inittr ar," first argument at thelowesr phvsical address.pointed to by iA6,Ar.L'. Th;-;u;;:;';; argumenrsfetched will be rerurned.in registei'D3-'as a word. Regisrer D0 w111contain the error code (lhe siatus flags^wi ll. be ser ufio, u..o.aing tothe error rerurn), and.^regisrers ni,--oz, D4, ;Ä:

-iö;,
ä"0 A2 areaffected. Registers A3 änd 45 ,iif n" preserved and, therefore, theaddress register A3 will need to be ufdut.d if a further call isrequired to one of these vectors.

Parameter arguments may, of course, be processed one at a time underthe programmerts own conLrol._To do this, you would extract the hash (#)and separaror codes, ser 45 to be eigÄt-uvt"" uüou.-;ä;-.;; rhen callthe appropriate uti1ity.. rt is .tuu.ry-'important, if yäu adopt thismethod, ro be careful how vou manipuraie'..gi;iÄ."'A: ä;; d so as norto miss any parameters, nor overrun.

8.8 Returning function values
A function value is returned simply by putting the value on thearithmetic stack (n9i199a ro uy-'16,ni.ri). ih: ";i;. ;;-;"sisrer Almust also be in BV Rrp(A6); see Fig.8.i. rne iir;;; oi^ii""'.ä.u.n musrbe placed inro relister D4 (r=stri.,g, i=irouting poinr, and 3=inreger).
1.1:it":l:::er

(32-bit) musr be .o.,uä.t"d und rätu..,ed' ;- ; rloaring

Get integers (f6-bit)
C,et floating.point numbers (6 byte)
Get strings (2+n bytes if evenr-

3+n byres if odd)
Get Iong integers (32-bit)

192

8.9 Returning parameter values
values may be returned

- through the parameter list of a procedure (orfunction!) cal1. As with function value returns, the parameter vafueshould be on the arirhmeric stack wlth BV_Rrp(Ä6)
""a ä..rroirg1y. Thereturn value must be *integer, string, or flo-ating poini,--to- ,nut.r, thecalling parameter. Register 43 Äust be set" io aÄ.

-.o..""ponding
parameter entry in the name table, and fina11y, the utitity B'.LET(vector $0120) catled

0n returning from-Bp.LET, register D0 vi1l be set to the error code,and regisrers Dl to D3 and A0 to A2 will be affected. rf- rhe actualparameter initially passed over h/as in-the form of un erp.e"sion, thereturn assignment will be made but the value lost.

8.10 Returning strings
The, word addressing limitations of the 68000 processor cause someproblems when returning strings. care must be exercised to ensure thatthe byte counter for the string comes on a word boundary (i.".,.r, evenmemory address). rn pracrice, rhis is achieve-d by;;;;l;e';"i

"oa lengrhsrrings by a blank ar rhe end of the srring. ll.tä ir,.i,
-Foi*""r"rp1.,

ustring of lengrh 3, and a string of lengrh 4, "i11-;;;i;;;"p, six byreson the stack.

8.11 Special note on arithmetic stack handling
The built-in utility routines to fetch arguments will reserve enoughspace on the arithmetic stack for their own purposes. rf a machine codeextension requires autonomous use of the aiitirmetic stack, it alsoshould reserve space bv calling the utilirv gv.öilnii-i""Jiäi^sorrel. r,r.number 3f brteg required shoulä be in regisrer Dl (as a rong-"o.a) onentry. The utility will affecr registers D0 una n:.-- - -"'^t

rt is possible that the arithmeiic stack wi.1l move when thls operation1s performed. rf the procedure has anything on the arithmetic stackbefore BV'cHRrx is ca11ed, the stäct pointer (usual1y register A1)should be saved in BV_RIP(A6), and rhen rerrieved främ BV_RIP(A6)afterward s.

8.I2 TRAP #4
There is a special TRAp for the SuperBASrc command interpreter, that maybe required for use also by machine code procedures. The particular rrapcall is TRAP #4, and it has the effect of making the aocrässes passed tothe r/0 traps (see chapters 5 and 6) relative Lo register A6. The callshould be made beforÄ each and every TRAp #2, or iilp-+:'-.äri, because1t.s effect is cancelled by the latter ca1ls.

For TRAP #2, regisrer A6 is added to AO on enrry. For TRAP #3,

r
Iv
vvI
I

193

register A6 is added to A1 on entry, but removed from it on exit. Notethat the TRAP #4 call will nor be canielled by a TRAp #3 call whichfails under lhe error rnot openr.

