LINKING INTO
8 SuperBASIC

There are two major topics within this chapter. One topie.s ds . that . of
SuperBASIC machine code commands (e.g., CALL, SBYTES, etc.), and the
second topic is concerned with interfacing machine code procedures and
functions into SuperBASIC in order to extend the language. We will, for
the present time, look at the theory only. The four chapters in Part 3
present plenty of real examples on how to do things in practice.

8.1 SuperBASIC machine code commands

A total of eight procedures and functions exist within SuperBASIC to
enable the assembly language programmer to load, save, and execute
machine code routines. Six of the commands are commonly used Cizgrg
CALL, EXEC, SEXEC, LBYTES, SBYTES, and RESPR), The remaining two (i.e.,
PEEK and POKE) exist mainly, it is suggested, for completeness, None of
the example programs in Part 3 need these last two commands. Peeking and
peking, as "a. diseipline on the 0L, is discouraged (at least be the
author!!). An assembler package should always be used to create, modify,
and generate machine code programs.

Although it may be possible to group the commands into sub-groups, and
then look at each sub-group, we will deal with the commands in
alphabetical order. This is consistent with the format in previous
chapters, and will make future references easier tasks.

CALL

This is a procedure which will accept an address followed by a maximum
of 13 parameters, The general format of the command is:

CALL addr, pl, p2, <.. 5 pn

The address 'addr' is the start address of the machine code to be
executed, and the machine code must exist in the resident procedure area
(see RESPR). If any parameters are supplied they will be put into the
68000 data and address registers DI to D7 and A0 to A5, respectively,
For example, if one parameter only is supplied, it will be placed into
data register D1. If eight parameters are supplied, the first seven will
go into data registers Dl to D7 respectively, and the eighth will go
into address register AO,

180

g

No parameters can be returned from a CALL statement, SuperBASIC will
report the error found in register DO on return from a called routine,
If no errors occurred in the machine code program, it is advisable to
set DO.L to =zero before returning. The CALL procedure is particularly
useful for calling the initialisation routine of a machine code package
to extend SuperBASIC.

EXEC

This 1is a procedure which is used to invoke an executable code file, or
a sequence of such files, Each executable program will become a separate
QDOS job, and will execute within the transient program area. Two forms
of the command exist:

EXEC jobl, job2, job3, ... , jobn

EXEC W jobl, job2, job3, ... , jobn
The first form (i.e., EXEC) will invoke the job and return immediately
to SuperBASIC. The second form (i.e., EXEC_W) will invoke the jobs, but
not return to SuperBASIC until all the jobs have finished execution. All

the example programs in Chapters 9 and 10 are designed to be executable
code programs and, therefore, invoked by this EXEC command.

LBYTES

Any file can be loaded into memory, starting at a specified address,
using this procedure, The general format of the command is:

LBYTES device_file, addr
The procedure is most obviously used to load machine code extensions to
SuperBASIC into the resident procedure area, prior to initialisation and
subsequent use. The parameter 'addr' is the base address in memory where

the code is to be loaded., Note that this procedure will only 1load the
file, it will not attempt to run the bytes loaded.

PEEK

This is a function which will return the contents of the specified
memory location. There are three forms, allowing a choice of data size:

value = PEEK addr
value = PEEK W addr

value = PEEK_L addr

181

The first of these will return a byte (8-bit) value. The specified
address may be any address desired. The last two will return a word
(16-bit) and a long-word (32-bit) respectively, Both of these latter two
forms require 'addr' to be an even address,

POKE

This 1is a procedure which will load the specified memory location with

the specified data. There are three forms, allowing a choice of data
sizes

POKE addr, data
POKE_W addr, data
POKE_L addr, data

The first of these will load a byte (8-bit) value, The specified address
may be any address desired. The last two will load a word (16-bit) and a
long-word (32-bit) respectively., Both of these latter two forms require
'addr' to be an even address, For word operations the memory locations
'addr' and 'addr+l' will be used, with the most significant byte going
into 'addr'. Long-word operations will use locations 'addr' to 'addr+3',
again with the most significant byte going into 'addr'.

RESPR

This is a function which is used to reserve space in the resident
procedure area of memory. It has the general form:

base = RESPR (space)

The function requires one parameter, specifying the amount of memory
required., If there is insufficient room in memory to perform the
required allocation, the message 'out of memory' will be displayed and
the function will abort. The function will also abort, with the error
message 'not complete', if any executable programs are in the process of
running. On a successful completion, the function will return the base
address of the memory area allocated.

Space allocated by RESPR, in the resident procedure area, cannot be
reclaimed (normally) without re-booting the machine. It follows that, if
two or more RESPR functions are executed without intermediate re-boots,
the function will keep extending the resident procedure area until
memory is exhausted. This enables more than one block of RAM to be
allocated, with each block having its own base address. The blocks will
not overlap,

182

SBYTES

This procedure is the inverse of LBYTES, discussed earlier. The general
form of the command is:

SBYTES device_file, addr, length

The area of memory from 'addr' to 'addr+length' will be saved on the
specified device, and in the specified file.

SEXEC

This is a procedure which will save an area of memory, on a specified
device, in a form suitable for use with the SuperBASIC EXEC (or EXEC W)
procedure. The general form of the statement is:

SEXEC device file, addr, length, dataspace

It is assumed that the area of memory from 'addr' to 'addr+length' holds
a machine code program. The parameter 'dataspace' should specify the
size of the data memory (including stack areas) that will be required by
the program when it is executed. Note that you do not save, therefore,
run-time workspace. You save the code only, and specify the size of
run-time workspace required.

8.2 Interfacing to SuperBASIC

When we talk of interfacing to SuperBASIC, we are really talking about
extending the SuperBASIC language by the addition of suitably written
machine code procedures and functions. Actually making SuperBASIC
realise that extra routines (commands or statements) are available is an
almost trivial task (see Sec.8.5). Collecting parameters, manipulating
SuperBASIC variables and channels, and returning results may not be so
easy (though they could not be called onerous).

In order to interface to SuperBASIC we need to know about such things
as the run-time context of our routine (i.e., what pointers exist in
which address registers when entry is made to our routine by
SuperBASIC), and the structure of the SuperBASIC work area. The rest of
this chapter is dedicated to the theory of interfacing to SuperBASIC.
Chapters 11 and 12 contain some real examples.,

8.3 The SuperBASIC environment

It was shown in Chapter 3 that the whole of the SuperBASIC area can
shift dynamically. This being the case, there must be a pointer
somewhere that informs SuperBASIC routines where the start of the area
is. All references to the actual program, the variable tables, and so on

183

will then be made relative to that (running) pointer. In practice, the
pointer is address register A6. 5

On entry to your machine code extension, register A6 will point to the
base of the SuperBASIC work area pointer table (see Fig.8.1). This
pointer table holds vital information about the relative positions of
distinctly separate SuperBASIC work areas. For example, one of these
areas 1is the program itself! Each pointer is a long-word and its value
is itself relative to register A6. In other words, the pointers do not
hold absolute location values for the work areas. They contain, instead,
relative offsets to the work areas. Let us look at each of these areas
in more detail,

BUFFER AREA

This is exactly what the name suggests; a buffer area, A minimum of 128
bytes exist, and routines are free to use the area as they wish. The
true length of this area can be determined by subtracting the buffer
area base pointer from the pointer held in '$08(46)", e.g.:

move.l bv_bfbas(ab6),d1 ;get base pointer

move, 1 $08(ab),d2 ;get pointer past top
subq.1 #1,d2 ; (top)

sub.1 d1,d2 ;length now in D2

A running pointer (BV_BFP) exists for use as required, within this
buffer area. It will usually point to the first free location,

SUPERBASIC PROGRAM AREA
This is simply the area where the current SuperBASIC program is held,

Pointers BV_PFBAS and BV_PFP point to the base and the byte beyond the
end of this area respectively.

NAME TABLE
This table is vitally important. Each reference to a variable in a

SuperBASIC program is, internally, a pointer to an entry in the name
table, Each entry is eight bytes long, as shown in Fig, 814

184

xXBAS —»

Tables {

XXP ———p

Table
pointers

Stack
pointers

*# Each pointer is itself

$00 (A6)

$04 (A6)
$08 (A6)

$10 (A6)
$14 (A6)
$18 (A6)
$1C (A6)
$20 (A6)
$24 (A6)
$28 (A6)
$2C (A6)
$30 (A6)

$34 (A6)

$58 (A6)
$5C (A6)
$60 (A6)

$64 (A6)

relative to A6

Low

Memory

High

Super BASIC variable
pointer table

XXP —p|

i Z Stacks

xXBAS —P|

Buffer base

BV_BFBAS

Buffer running pointer

BV_BFP

Super BASIC program base

BV_PFBAS

Top of Super BASIC program

BV_PFP

Name table base

BV_NTBAS

Top of name table

BV_NTP

Name list base

BV_NLBAS

Top of name list

BV_NLP

Variable values base

BV_VVBAS

Top of variable values

BV_VvpP

Channel table base

BV_CHBAS

Top of channel table

BV_CHP

Top of arithmetic stack

BV_RIP

Base of arithmetic stack

BV_RIBAS

Top of system stack

BV_SSP

Base of system stack

BV_SSBAS

Figure 8.1 SuperBASIC pointer table and work areas

185

BYTE | USE

0,1 Description of usage of name:
0001 unset string variable
0002 unset floating point variable
0003 unset integer variable

0201 string variable

0202 floating point variable

0203 integer variable

0300 array substring (internal only)
0301 string array

0302 floating point array

0303 integer array

0400 SuperBASIC procedure

0501 SuperBASIC string function
0502 SuperBASIC floating point function
0503 SuperBASIC integer function
0602 REPEAT loop index variable
0702 FOR loop index variable

0800 Machine code procedure
0900 Machine code function
2,3 Name pointer. This is an offset to the name

in the name list. A value of -1 signifies that
the entry is an expression value for the
expression evaluator (in such cases the bytes
0,1 of the name table entry will be Olxx), If
the entry is a copy of another entry, the name
pointer will be a pointer to that entry,

4-7 Value pointer (long-word). This is an offset to
the value of the entry (in the case of variables)
or to the descriptor (in the case of arrays),
from the base of the variable values area, If

the pointer is negative, a value has not been
assigned yet. It is also used for the absolute
pointer to a procedure or function, or the line
number of a SuperBASIC procedure or function.

Note that procedures (SuperBASIC or machine code), and machine code
functions, have no 'type'. SuperBASIC functions do have a type, which is
defined by the 1last character of the function name (i.e., none, $, or

%).

NAME LIST
This is a list of the actual names themselves. Each name is stored as g

byte of data holding the character count, followed by the characters of
the name,

186

VARIABLE VALUES

This area is a heap area with entries allocated in 8-byte blocks. One or
more block allocations are used, depending on the type of the variable.

1. An integer is two bytes long. Normal two's complement format is used.

2

A floating point number is stored as a 2-byte offset exponent
followed by a 4-byte mantissa. Examples of floating byte codes are:

Exponent Mantissa Value
0000 0000 0000 0.0
0801 4000 0000 1.0
0800 8000 0000 1.0
0804 5000 0000 10.0

- A string will be stored as a word of data, containing the byte count

of the string, followed by the string itself. The actual space taken
by a string will be rounded to the nearest even number.

Array descriptors have a long-word header that is the offset of the
array values from the base of the variable values area. Next, there
are the number of dimensions of the array (stored as a word of data),
and then there are pairs of data words for each dimension. The first
'dimension word' will specify
the maximum index for that
dimension, and the second

word will be the index AQOO | 6 }Z“‘l‘"’“e’
multiplier for that e
Multiplier = 3
dimension. The figure AL g 5
opposite shows the layout of A (0.2) 6
a floating point array. Note
that 1F the dimensioning A (1,0) 6
statement in SuperBASIC was,
for example, A (L1) 6
g & Example of array
DIM A(3,2) . v storage showing
° . index multipliers
the descriptor would have the

format: dim A (3,2)

basey 2.,53,73, 2.1

The storage of floating point arrays and integer arrays 1is entirely
regular. Floating point array elements are six bytes long, and
integer array elements are two bytes long.

A string array is regular (i.e., it is an array of standard
strings) except for element =zero of the last dimension. The last
dimension of a string array defines the maximum length of the string.
It will always be rounded up to the nearest even number.

187

CHANNEL TABLE

SuperBASIC

would therefore be located at:

r each open

channel numbers (#n) are pointers to the channel table, This
table is a set of sub-tables, one sub-table fo
Fig.8.2). A sub-table is 40 ($28) bytes long.

channel (see

The sub-table entry for #n

BV_CHBAS(A6) + (n x CH.LENCH)

BV_CHBAS (A6) $00

$04

$0A

$10

$16

$20

$22

$24

= (CH_LENCH) $28

Channel ID
(long)

Cursor position Y
(fp)

Cursor position X
(fp)

Turtle angle
(fp)

Pen status (up/down)
(byte)

Character position on line
(word)

Width of line in characters
(word)

CH_ID
CHCCPY:
CH=-CCPX:
CH_ANGLE
CH_PEN
CH_CHPOS
CH_WIDTH

CH_SPAREJ

Figure 8.2 SuperBASIC channel definition table

188

Super BASIC
[#0

Super BASIC
#1

ARITHMETIC STACK

The arithmetic stack is the working area for expression evaluation., It
is also used in evaluating call, and return, parameters. It may also be
used as a general working area. Remember that stacks grow downwards
(i.e., from high memory to lower memory).

The SuperBASIC interface mechanism automatically tidies up the
arithmetic stack after procedure calls, and after errors in functions,
On the other hand, a good return from a function must be made with a
tidy stack. The return argument must be on the top of the stack (i.e.,
at the low stack memory end), and no other data must be left below the
argument (i.e., at a physically higher stack memory address). See
Sec.8.11 also.

SYSTEM STACK

This is the area used when any reference is made (implied or otherwise)
to the address register A7. It is, for example, the stack area that will
be used to store the return address for a 68000 'BSR' instruction,

8.4 Implementing machine code procedures

There is a simple set of rules that must be obeyed when writing machine
code extensions to the SuperBASIC language.

1. It must be remembered that the whole of the SuperBASIC area can move,
and therefore all references to this area must be relative to address
register A6 (or A7 in the case of stacks). These two address
registers should never be saved for future use (obviously!), used in
arithmetic or address calculations, or altered (except by pushing and
popping on the A7 stack).

2. Not more than 128 bytes may be used on the 'user' stack.

3. Data register DO must be returned with an error code (long-word).

On entry to the routine, SuperBASIC will have set up, in addition to
the above registers, address registers A3 and A5. Any parameters passed
over to the routine will have entries created for them in the name table
(see Sections 8.3 and 8.6). Register A3 will point to the first
parameter entry, and register A5 will point to the end of the last entry
(remember that A3 and A5 are relative to A6). The number of parameters
passed over will, therefore, be equal to '(A5-A3)/8'. Clearly if A5
equals A3, no parameters were supplied.

Registers D1 to D7, and AO to A5 may be treated as volatile within the
routine itself (though it would be very unwise to destroy A3 or A5 too
early!).

189

8.5 Creating name table entries

A simple mechanism exists for the initialization of RAM based extensions
to SuperBASIC. The extensions should be loaded into the resident
procedure area by using the SuperBASIC commands RESPR and LBYTES. For
simplicity, and the sake of clean source documentation, it is convenient
to have the initialization code at the very beginning of the machine
code (though this is not essential),

INITIALIZATION CODE

The code, and its corresponding table, for the initialization of
extension routines is very simple. Address register Al should be set to
the start of the procedure definition table, and a call made to the
utility routine BP,INIT (vector $110):

lea proc_def(pc),al ;get table address,
move.w $110,a2 ;prepare for BP,INIT and
jsr (a2) ;call it.

moveq #0,d0 ;N0 error.

rts sfinish,

More than one extension can exist, and the format of the table is
therfore:

Data size Use

word number of procedures

(for each procedure):

word - pointer to routine

byte - length of procedure name
characters — name of procedure

word 0

word number of functions

(for each function):

word — pointer to routine

byte - length of function name
characters — name of function

word 0

The number of procedures and/or functions is used purely to reserve
internal table space. If the average length of the names exceeds seven,
this number needs to be:

190

(total no. of characters + number of routines + 7)/8

The pointers to the routines are relative to the address of the
pointer. All registers (except Al) are preserved by the BP,INIT utility.
No more than 48 bytes are used on the 'user' stack.

8.6 Parameter initialization

When a machine code procedure or function is called, an entry will exist
in the name table for each parameter passed over. At the end of
execution, the parameter entries in the name table will be removed,
together with any temporary entries made in the various tables (eigis
the variable values table),

Name table entries, for call parameters, have the various separators
(e.g., hash, comma, semi-colon, and so on) masked into the least
significant byte of the description code (i.e., byte 1, see Sec.8.3).
The full form of this byte is given by the bit pattern:

bit

776°5:4% 3210
|[hsss vvvy

]

Bit 7 ('h') will be set if the parameter was preceded by a hash (#).
Bits 4 to 6 specify the separator that follows the parameter:

bit separator

654

000 no separator
001 comma (,)

010 semi—colon (;)
011 back-slash

100 exclamation (!)
101 the keyword TO

Bits O to 3 specify the 'type' of the parameter, as follows:

bit type

3210

0000 null

0001 string

0010 floating point
0011 integer

Note that if an expression was passed over as an actual parameter to the

191

call, the name pointer in the name table (bytes 2,3 - see Sec.8,3) will
be set negative,

8.7 Obtaining arguments

4 set. ofi four SuperBASIC utility routines exist which will read an
indeterminate number of identical 'type' parameters, They are accessed
in the same way as other utilities (i.e., through vectors), and they
have the following vector addresses:

$0112 CA.GTINT Get integers (16-bit)

$0114 CA.GTFP Get floating point numbers (6 byte)
$0116 CA.GTSTR Get strings (2+n bytes if even,

3+n bytes if odd)
$0118 CA.GTLIN Get long integers (32-bit)

If a parameter list contains different "types', it will be necessary to
make multiple calls to appropriate routines in order to collect all of
the parameters,

On entry, the utilties require A3 and A5 to be set to the base and the
top of the name table parameter entry list respectively, The results
will be placed on the arithmetic stack, with the first argument at the
lowest physical address pointedto by 'A6,41.17 . The number of arguments
fetched will be returned in register D3 as a word, Register DO will
contain the error code (the status flags will be set also, according to
the error return), and registers D1, D2, D4, D6, A0, and A2 are
affected. Registers A3 and AS will be preserved and, therefore, the
address register A3 will need to be updated if a further call is
required to one of these vectors, >

Parameter arguments may, of course, be processed one at a time under
the programmer's own control. To do this, you would extract the hash (#)
and separator codes, set A5 to be eight bytes above A3, and then call
the appropriate utility. It is clearly important, if you adopt this
method, to be careful how you manipulate registers A3 and A5 so as not
to miss any parameters, nor overrun,

8.8 Returning function values

A function value is returned simply by putting the value on the
arithmetic stack (pointed to by 'A6,Al.L'). The value of register Al
must also be in BV_RIP(A6); see Fig.8.1. The "type' of the return must
be placed into register D4 (1=string, 2=floating point, and 3=integer),
A long integer (32-bit) must be converted and returned as a floating
point value,

192

moon

8.9 Returning parameter values

Values may be returned through the parameter list of a procedure (or
function!) call. As with function value returns, the parameter value
should be on the arithmetic stack with BV_RIP(A6) set accordingly, The
return value must be integer, string, or floating point, to match the
calling parameter, Register A3 must be set to the corresponding
parameter entry in the name table, and finally, the utility BPJLET
(vector $0120) called.

On returning from BP.LET, register DO will be set to the error code,
and registers Dl to D3 and AQ to A2 will be affected. If the actual
parameter initially passed over was in the form of an expression, the
return assignment will be made but the value lost.

8.10 Returning strings

The word addressing limitations of the 68000 processor cause some
problems when returning strings. Care must be exercised to ensure that
the byte counter for the string comes on a word boundary (i.,e., an even
memory address). In practice, this is achieved by padding out odd length
strings by a blank at the end of the string. Note that, for example, a
string of length 3, and a string of length 4, will both occupy six bytes
on the stack,

8.11 Special note on arithmetic stack handling

The built-in utility routines to fetch arguments will reserve enough
space on the arithmetic stack for their own purposes. If a machine code
extension requires autonomous use of the arithmetic stack, it also
should reserve space by calling the utility BV,CHRIX (vector $011A). The
number of bytes required should be in register DI (as a long-word) on
entry, The utility will affect registers DO and D3,

It is possible that the arithmetic stack will move when this operation
is performed. If the procedure has anything on the arithmetic stack
before BV.CHRIX is called, the stack pointer (usually register Al)
should be saved in BV_RIP(A6), and then retrieved from BV_RIP(A6)
afterwards,

8.12 TRAP #4

There is a special TRAP for the SuperBASIC command interpreter, that may
be required for use also by machine code procedures. The particular trap
call is TRAP #4, and it has the effect of making the addresses passed to
the I/0 traps (see Chapters 5 and 6) relative to register A6, The call
should be made before each and every TRAP #2, or TRAP #3 call, because
its effect is cancelled by the latter calls,

For TRAP #2, register A6 is added to AQ on entry. For TRAP #3,

193

—————

register A6 is added to Al on entry,
that the TRAP #4 call will not be cance
fails under the error 'not open'.

194

but removed from it on exit. Note

lled by

a

TRAP #3

call

which

- —-—

