culate init

x co-ordinate
=Xc-R

3

Calculate R/32

1-

i

Multiply R/32
by table value

Y
Calculate
ya=yc-yup

point

-

g
4 § al

Calculate
yb=yc+yup

4
-

Plot paint |

b,

-

Increase x

Increment count

VI

VIODORE 64 GRAPHICS

to calculate the corresponding y co-ordinate in the
bottom half of the circle:

yb = ycentre + yup
DEVELOPING OUR ROUTINE

We can now map out the structure of the routine in
detail. The flowchart shows how each point on the
circumference can be calculated. We can see that
the routine should be fairly fast as only one
multiplication needs to be performed for each
point plotted. However, there are two slight
problems with the routine as it stands. First of all,
we will not produce a continuous circle, only a
series of points around the circumference.
Secondly, although this technique produces well-
defined circles when used from Basic, there are
inaccuracies when it is done in machine code.

The first problem can be solved by making use
of Linesub (see page 419) to join the points with
short lines, to produce a continuous circle. The
second problem is due to inaccuracies in the
calculation of the square root ‘look-up’ table.
Calculating the values in Basic and POKEing them
into a series of bytes set aside for the table means
that only the integer part of each value is actually
stored. To get more well-defined circles, we must
improve the accuracy of the values stored in the
table. The maximum number to be stored is 32,
and therefore we can multiply each number by
eight before storing it, and still use only one byte
per table entry. 32 is the only number, when
multiplied by eight, which can’t be held in a single
byte. To simplify the routine we'll approximate this
value. Our machine code routine can then divide
the table value by eight, by performing three LSRs
(logical shifts right) on it. More importantly, it can
keep the remainder after division for use in further
calculations.

The source code listing sets aside 65 bytes at the
beginning of the program to store the table, the
first byte of which is labelled. Subsequent entries
in the table can be accessed by indexed addressing.
The source code listing can be entered and
assembled into memory as usual. However, before
SAVEing the assembled code, the following Basic
program should be entered and RUN. It will not
corrupt your object code, as this is located high in
memory. The program calculates the 65 table
values required by our Circsub program,
multiplies these values by eight and POKEs the
result into the area of memory set aside in your
machine code program. Once the table creation
program has been RUN the machine code can be
SAVEd in the usual way, but ensure that you SAVE
the table area in with the object code. The table
starts at SC500. Once this has been done, the ‘look-
up’ table will be loaded automatically whenever
you load Circsub.

5 REME#¥$% CREATE CIRCSUE THRELE %k
18 FORN=ATOs4

2R R=S0RCEdEN- T2

4 IF=3=K%

7 IFREZ=, STHEHX
2 IFH
3 FIOKESR4324+H, 5K
3 MEXT

0

R T

f

7]

The following program shows how Circsub can be
used from within a Basic program. All that is
required is to specify the centre co-ordinates and
the radius. The subroutine at line 2000 splits the x
co-ordinate into LO-byte/HI-byte form, then
POKEs the specified values to Circsub and makes
the appropriate SYS call. Note that, as Circsub uses
Linesub, which in turn uses Plotsub (see page
337), all three subroutines must be loaded at the
start of the program. This program draws circles
with increasing radii across the screen.

3 REM##d# CIRCEUR TEST PROGEAM #dké

S DH=&:REM FOR CASSETTE DH=1

18 IFA=ATHENA=1 LOAD"FLOTSUE, HER") DN, 1
15 IFA=1THENA=Z LOAD"L IHESLUIE, HEX" IN» 1
28 1FA=2THENA=% LOAD"CTRCSUR. HEX" DN 1
180 GoSUELa0e

119 Yi=108' k=
120 FORKC=2aT02185TEF?

128 F=R+3

148 GusURZE6E

1568 HEXT

168 GETRE: IFA$=""THENL&Q

178 GOSUR30E60

188 EWD

1860 REM ®¥s% SET HIRES #E#
1Al POKE45408, | POKE4R4a5, 1
1920 POKE4S419, 3
1838 SY549422
1a4a RETURN

5]
2808 FEM $%4e ENTER CIRCSUE ##4%
2818 CHI=INT (RO /258 b LG ~ 256
2826 POKES@O49Y, CLO - POKESE455 ., CHI
ZE38 POEESE439, YD
2848 POKESHSHE, R
2056 SYSSa521
2868 FETURN
2870
3090 REM #kEE CLEAR HIRES ##s%
2085 RESTORE
3087 PRINTCHRES$(1470 -REM CLEAR SCREEN
230838 FRINTTREC1GY "CIRCSLE WHEIARBLES"
ABS PRINT
G018 POKEASGEE, 0 SY549422
3020 FORI=S6457TOSA497 +235TERZ
2335 FEADAE
FPRINTTARCZ) A% PEEKCT),
345 RERDAF
A4y FRINTHE PEEKCT+1 D
3 HEXT
=0 RETLIRH

{ L
n
T,
*
X

06 DATHACTRLO, RETRH L, YCTR. RADIUS, INTR

B1G DHTAREMR, TOTH, RESREM, RESLO, RESHT OLDHLO

28 DHTAOLIAHT , HEWSLO, NEMSHT . OLDYA

B0 DATROLIYE NEWY AL HEWY B, KFLAG. YFLAG, LDV HELY
adil TATHINTTHE . REMTAE

As with the other high resolution subroutines for.

the Commodore 64, the machine code can also be
entered as a series of DATA statements if you do not
have an assembler. The listing below should be
typed and RUN to load Circsub into memory. Note
that the Basic loaders for Linesub and Circsub
should also be loaded and RUN prior to loading the
demonstration program. As the three routines will
now be in memory, lines 10, 15 and 20 of the demo
program should be omitted. Note that the Basic
loader for Circsub already contains the look-up
table data and so it is not necessary to RUN the
‘create table’ program in this case.

-

The machine code section of The Home Computer
Advanced Course has so far concentrated on home
computers with the Z80 and 6502 micropracessor.
But there is a third popular microprocessor, the 6809
chip, which is used in the Dragon and Tandy Color
computers. The course will soon be turning its
attention to this chip and teaching 6809 owners to
program in machine code too

458 THE HOME COMPUTER ADVANCED COURSE

