
KNOWLEEGE-BASED SYSTEMS /APPLICATION

drawing inferences: `forward chaining' and
`backward chaining'. Broadly speaking, forward
chaining involves examining data in order to form
hypotheses, while backward chaining attempts to
find data to prove or disprove an already formed
hypothesis. Pure forward chaining leads to
unfocused `What if...' type questioning of the
system, whereas pure backward chaining tends to
be rather relentless in its goal-directed
questioning.

Most successful systems use a mixture of both.
Whether an inferencing procedure works
primarily backwards or forwards, it will have to
deal with uncertain data. Computer specialists
have tried to force the world we live in into the
rigid confines of the computer, and it has never
been a comfortable fit. Now ES research has given
us means of dealing precisely with uncertainty -
in other words with the real world rather than
some idealised abstraction that our data system
forces us to use.

Indeed we have too many ways of dealing with
uncertainty. There are Fuzzy Logic, Bayesian
Logic, Multi-Valued Logic and Certainty Factors
to name only four: such logics replace the certainty
of `IF X IS TRUE THEN Y IS TRUE' with the
cautious statistical inference, `IF XIS TRUE 65 %
OF THE TIME THEN Y IS BETWEEN 50%
AND 70% LIKELY'. All sorts of schemes have
been tried, and the odd thing is that they all seem
to work. A possible explanation of this state of
affairs is that the organisation of knowledge
matters more than the numeric values attached to
it. Most knowledge bases incorporate redundancy
to allow the expert system to reach correct
conclusions by several different routes. The
numbers measuring degree of belief are important
only as a way of choosing between one value set
and another.

Software packages designed to facilitate the
knowledge-based approach to systems design are
now coming onto the market. So far the only one
within the budget of the home computer
enthusiast is the HULK (Helps Uncover Latent
Knowledge), on sale from Brainstorm Computer
Solutions at around £25. It runs only on the BBC
Model B and Torch computers, although a QL
version is promised.

HULK enables the user to build up and test a
set of decision rules, which can later be used for
prediction or classification. You will find it useful if
you have a set of examples or cases each measured
on several variables and wish to discover patterns
and regularities for predictive purposes.

For instance, suppose a farmer kept detailed
measurements on a home computer of the height,
leaf colour and so on of several hundred sugar beet
plants, and recorded those that became diseased
before harvest time and those that remained
healthy. The system could be used to help develop
rules relating the characteristics of the plant to its
state of health. Later those rules could identify
plants at risk and thereby improve prospects for
the following year's crop. This farmer might never

know what those rules were, but the system could
apply them to the plant data as it was supplied.

Alternatively, you might hold information on a
season's football results and want to develop a way
of categorising games as likely wins, draws or
losses on the basis of various indicators known
before kick-off. The necessary data for making
decisions, such as the home team's recent
performance, previous results of this fixture,
relative positions of the teams in the league table, is
all readily available. But it's very time consuming
to organise and difficult to correlate without the
aid of an ES. There are plenty of applications for
the HULK — all you need is a set of data.

The HULK package consists of two main
programs: LOOK (Logical Organiser Of
Knowledge) and LEAP (Likelihood Estimator
And Predictor). These allow the user to develop a
set of rules from a data file of observations held on
disk (for example, results of past matches and any
other decision factors), and then to apply that rule
set to another data file of incomplete observations
(for example, the decision factors for next
Saturday's matches) in order to make predictions
about them. The rule set is the knowledge base: it
expresses the system's knowledge about the data.
In HULK, it consists of probabilistic decision rules
that can be used for classification or forecasting.

The knowledge base grows through the
interaction of the user and the computer: rules are
proposed by the user and tested by the computer;
the user discards those that do not improve the
overall performance of the system.

To use LOOK you need a data set, or preferably
two (a large data set can be split into two parts for
this purpose). One is called the `training set' for
trying out rules, and the other is called the `test set'
for confirming their usefulness on unseen data

Once the data is on file, LOOK is used to test
your hunches by proposing new rules, one at a
time. It runs each rule over the training set and tells
you how much, if at all, it improves the prediction
score of the rules already present. Then it
recommends whether to keep or discard the new
rule. The final decision is left to the user.

LOOK is not a true learning program, but a
kind of filter that allows only useful guesses or
conjectures through. In a sense, it is a learning
program without a learning algorithm; the user
does the learning, while the machine does the
clerical work of comparing, evaluating, and
assessing the data set.

Having created the rules with LOOK, LEAP
can be used to apply them to unknown samples.
The rules are combined to give a single probability
estimate for every sample in the test data set.
LEAP's output includes a list of samples ranked
according to their likely outcome. What this
outcome might be (SCORE DRAW, or HIGH
YIELD FROM THIS VINE) depends on the
nature of the sample data, and what the user was
trying to predict from it. HULK will supply the
acquisition module and knowledge base facility,
leaving the user in control of the inference engine.

THE HOME COMPUTER ADVANCED COURSE 83


