
ONE /MACHINE CODE

to another. In fact, the CPU and the system are
more complicated than that, but it's not a
misleading view. You can think of the CPU as a
master controller that sets lesser switches
throughout the system to control the flow of
electricity, and thus controls the flow of
information indirectly, rather than routing all
information physically through itself.

The effects of the CPU's switching operations
can be classified for our purposes as: arithmetic
operations, logical operations, memory
operations, and control operations. These
operations are all the results of switching
information through different paths in the system
and in the CPU, and to the CPU they all seem like
the same sort of thing.

Arithmetic operations are really the most
important feature of the machine. The CPU can
add two numbers together, or subtract one from
the other. Subtraction is achieved by representing
one of the numbers as a negative number and
adding that negative number to the other number;
7+5= 12 really means:

(plus 7) added to (plus 5) equals (plus 12).

7-5=2 really means:

(plus 7) added to (minus 5) equals (plus 2).

Multiplication and division are regarded as
repeated additions or subtractions, so the CPU
can be programmed to simulate these processes as
well. If the CPU can cope with the four rules of
arithmetic, then it can cope with any
mathematical process. It is well to remember,
however, that all its mathematical potential relies
on the ability simply to add two numbers.

Logical operations for our present purposes
can be described as the ability to compare two
numbers: not merely in terms of relative size, but
also in terms of the pattern of their digits. It's easy
to see that seven is bigger than five because we can
take five away from seven and still have a positive
result. The CPU has the ability to do that sort of
comparison, and it can also compare 189 with 102
and recognise that both numbers have the same
digit in the hundreds column. It may not seem a
very useful ability as yet, but its use will become
more evident later.

The CPU can perform essentially two memory
operations: it can copy information from a
memory location into its own internal memory,
and it can copy information from its internal
memory to another memory location. By doing
these two things one after another it can therefore
copy information from any part of memory to any
other part of memory. For the memory to be any
use, the CPU must be able to do both these things,
and these two operations are all it needs for
complete management of the memory.

Control operations are really decisions about
the sequence in which the CPU performs the
other operations we have described here. It's not
important at the moment to understand them any
better than that: if you accept that the CPU can

make decisions about its own operation, then that
is sufficient at this stage.

So the CPU can do arithmetic, it can compare
numbers, it can move information around in
memory and it can decide its own sequence of
operations. This is a simple list of procedures, and
yet it completely descibes or specifies an ideal
computing machine! If the CPU can do those four
things, then by doing them in the right sequences
it can perform any computable task. The right
sequence, of course, is the computer program for
the particular task, and that's where we as
programmers come in. If the CPU had the ability
to generate its own operation sequences, then
there would be no need for us.

You may not be convinced that the four types
of operation we have described are a sufficient
description of a conceptual computer, so let's
think about a BASIC program in terms of the
general operations performed. What are these
fundamental operations? In any program you
have variables, which are simply the names of
places in memory where information is stored.
Most programs perform some sort of arithmetic
upon some of these variables. Having done the
arithmetic, a program will often compare two
pieces of information and as a result will execute
one set of instructions or another. Information
usually comes into a program from the user at the
keyboard, and goes out to the user via the screen.

Except for the sentence about input and
output, this description contains no more than the
four elemental CPU operations put into different
words. And, if you accept for the moment that to
the CPU all Input/Output devices are just special
areas of memory, then the picture of the ideal
computer executing actual programs is complete.
Consequently, the execution of a program can be
described as a directed flow of information into,
around, and out of the computer; you supply
some information via the keyboard, that
information is manipulated by your program, and
some information appears on the screen.

If the idealised computer is just a CPU and
some memory, then before going any further we
should investigate computer memory: what is it,
and how does it work?

Imagine a simple electrical circuit consisting of
a battery, a switch, and a light bulb: if the switch is
closed the light goes on, and stays on until the
battery runs down or until the switch is opened.
Then the condition of the light bulb — ON or
OFF — is a piece of information, and the whole
circuit is a memory device recording that
information. Suppose now that the switch is
placed at the entrance to a factory, and the light is
placed in the Manager's office. When the first
employee arrives at the factory, he or she closes
the switch at the entrance, and the Manager in the
office can see that the light is on and therefore
knows that someone has turned up for work. The
Manager doesn't have to be in the office when the
light goes on; he or she can look at the light bulb
at any time to find out whether someone has

[HE HOME COMPUTER ADVANCED COURSE 17


