
PART 12/MACHINE CODE

code column. Because OW automatically converts
its operands into lo-hi form, it is most often used to
initialise 'pointer' locations with addresses. LABL2,
or location $D3A1, might be such an address — it
points to location $98CE.

The third thing to consider is that the
instruction DS $10 has the effect of adding $10 to
the program counter. This is clearer in the symbol
table than in the actual listing — LABL3 represents
the location $D3A3 (the location following the
previous instruction), though it appears from the
listing that its value is $D3B3. This is actually the
location address of the next instruction after the
DS instruction, so DS $10 has reserved a block of 16
bytes (from $D3A3 to $ D3B2 inclusive) between
one instruction and the next. This is a process
rather like putting long REM lines into a BASIC
program to create unused space in the program
text area that can then be POKEd and PEEKed as a
machine code program area (see page 137).

Finally, the last instruction uses EQU to set one
symbol equal to the value of another, so that
DATA1 has the value $D3A3 (the value of LABL3).
This is another source of possible confusion.
LABL3 is the symbolic representation of the
location address $ D3A3, so DATA1 EQU LABL3
means 'the symbol DATA1 is to have the same
meaning and value as the symbol LABL3'. The fact
that the DB instruction has made the contents of
$D3A3 equal to $5F has no significance for the

fkm
meaning of the symbols LABL3 and DATA1.
Keeping the distinction between a location and its
contents clear in your mind is one of the most
testing difficulties in the early stages of learning
Assembly language programming. You may have
had the same problem with BASIC program
variables and their contents.

At first glance, the DB directive seems to
duplicate EQU, but this is not the case. LABL1 means
'the location $D3A0', and DB $5F has initialised that
byte with the value $5F, but, although the value of
LAB L1 is now fixed, the contents of the location it
symbolises can be changed at any time (by storing
the accumulator contents there later in the
program, for example). Similarly, DATA1 is now a
symbol whose value is fixed by the EQU
instruction; its value cannot be changed by the
program's execution. And again, LABL3 points to
the start of a 16-byte data area, the contents of
which can be changed in the program, but LABL3 is
itself unchangeable.

This introduces, but does not exhaust, the
possibilities of the new pseudo-ops. Consider this
new version of the previous fragment:

ORG $D3A0
D3A04D4553LABL1DB'MESSAGE 1'
D3A9CE981..ABL2OW$98CE
D3BBLABL3DS$10
D3BBDATA1EQULABL3

SYMI30L TABU:

LABL1 = D3A0: LABL2 = D3A9: LABL3 = D3AB
DATA1 = D3AB
ASSEMBLY COMPLETE — NO ERRORS

The DB instruction has a string, 'MESSAGE 1', as its
operand, and the assembler has initialised the
locations from $D3A0 to $ D3A8 with the ASCII
values of the characters within the single quotes.
This can be inferred from inspection of the
location address column in the listing, and is partly
confirmed by the machine code colutrin — the
contents of the three bytes from $D3A0 to $D3A2
are shown to be $4D, $45, and $53, which are the
hex ASCII codes for 'M', 'E', and 'S'.

This is a significant facility, not only because it
relieves the programmer of the task of translating
messages and character data into lists of ASCII
codes, but also because it makes the listing much
easier to read, and hints at the possibility of
actually getting some screen output from our
Assembly language programs. The latter is
particularly significant because so far we have
been restricted to storing results in memory and
inspecting them using the Monitor program (see
page 118). Naturally, we will be exploring screen-
handling in the course, but there are still aspects of
Assembly language that we need to investigate
before going onto that topic. If, however, you
think about our habit of storing results in memory,
and if you understand already that memory-
mapped screen displays are, in effect, only areas of
memory, then you may be able to see a way of
addressing the screen from a program.

The most important aspect of this new DB
facility is that it confers on LABL1 the status of a

Exercises
1)The first program fragment in the main text uses the
DS pseudo-op to reserve $10 bytes of memory
starting from the address represented by the label
LABL1. Write an Assembly language program that will
store the numbers SOF to $00 in descending order in
this block, one number per byte. This should be done
using a loop, and indexed addressing techniques, for
which you will need to use the DEX (decrement the X
register) or DEC (IX+0) (decrement IX) instructions.
The loop should continue as long as decrementing the
index register does not cause the zero flag to be set, so
use the BNE or JR NZ branch instructions.

2) Using the techniques of the previous exercise, write
a program to copy the message stored at LABL1 by the
DB pseudo-op (see the second program fragment in
the main text) to a block of memory starting at the
address stored at LABL2 by the OW pseudo-op. The
address $98CE may not be suitable for your
computer, so change the initialisation, but the
program should work for any address, and for any
length of message. To implement this, your program
must use either the number of characters in the
message as a loop counter, or it must be able to
recognise the end of the message — you might put an
asterisk, for example, as the last character of any
message.

THE HOME COMPUTER ADVANCED COURSE 237

