
The detection and correction of errors is an
important aspect of program design.
Problems may be caused by typing errors,
but faulty logic or a misconception of the
program's function can have more serious
results. We examine potential trouble-spots
— at the interfaces between subroutines and
between the program and its user.

There are many potential sources of error at each
stage of a program's creation, from its
specification, through design and coding, to the
testing. Errors are often introduced at the
specification and design stages if little thought is
given to the nature of the problem and insufficient
care is taken to ensure that the program does
exactly what it is supposed to do. We can reduce
the chances of these mistakes occurring by
following the structured design methods outlined
earlier in the course (see page 476). Further errors
are likely to arise as the design is translated into
code — poor typing can introduce bugs, as anyone

Error Checkl"
A logical structured approach is the essence
avoidance and debugging; the following
(from an idea by G J Myers in The Art
Testing') is an abbreviated example of such

of error -
error checklist

Of Software
an approach

Variables
1 Are all variable names unique, bearing in
mind that many interpreters use only the
first two characters of any name?
2 Have any variables (especially loop
counters or subroutine parameters) been re-
used while their contents are still
significant?
3 Are array subscripts within bounds, and
are they whole numbers?
4 Do array subscripts start at element zero
or element one?

Calculations
1 Do calculations yield string or numeric
results, and are the results assigned to
string or numeric variables?
2 Does any calculation result in a number
too small or too large for the computer to
handle? Can this cause a 'divide by zero'
error?
3 Can rounding errors be significant?
4 Are all operations in an expression
executed in the correct logical order, as
opposed to the order imposed by the
precedence of arithmetic operators?

Comparisons
1 Are strings always compared only with
strings, and numbers with numbers?
2 Does it matter if a test string is wholly or
partly upper-or lower-case?
3 Are strings of unequal length being
compared, and does the difference in length
matter more or less than differences in
characters?
4 Are Boolean and comparison operators
being mixed properly? A> B OR C is not
the same as A> B OR A> C, for example.
5 Does the precedence of Boolean and
comparison operators affect the execution of
any comparison expression?..„.. ... _ .

Control
1 Do loops and algorithms terminate
whatever the state of the variables?
2 Do loops and routines have only one entry
and exit point each?
3 When an IF...THEN statement fails, does
control pass to the next program statement
or the next program line?
4 What happens if none of the test
conditions in a multiple branch statement is
satisfied?

484 THE HOME COMPUTER ADVANCED COURSE

FAULT LINES
who has ever misspelt a variable name knows only
too well! — and even testing and debugging can
cause other mistakes when a correction to one
fault itself leads to others.

But it is at the interfaces — between routines
and between the program and its user — that most
errors are to be found. Particular care should be
taken to ensure that any values passed across these
interfaces are of the correct data type and fall
within the range required by the program. Values
may be checked either within the routine that
passes them or in the routine that accepts them;
the process of checking values as they pass
between routines is known as 'firewalling'.

To ensure that values output by a routine are in
an appropriate range and are of the right data
type, checks should be carried out if the output
depends on a value entered by a user or read from
a file. Values that are entered into a routine should
always be checked. Subroutines can be designed
to give a well-defined set of outputs, but human
beings do not operate so methodically and tend to
have a wide range of different responses to any
given prompt, so stringent checks must be placed
in any routines that accept data from users.
Similarly, files of data may be corrupted or
misread, so checks should be placed in all file-
handling routines.

Errors do not often cause programs to crash.
When they do, it is because the program has
broken a rule of the language (using an operator
illegally, for example, as in RESULT = FIRSTS +
SECONDS) or a rule of the operating system
(opening too many files at the same time, say).
The following code would appear to be a perfectly
legitimate program:

10 FORCOUNTER = 1 10 10
20 SUM = SUM +1
30 PRINT COUNTER, SUM
40 GOTO 10
50 NEXT COUNTER

However, it is a non-terminating algorithm and
will crash the system because of the way the
language works. In this case, the language (aAsic)
uses the 'stack' to keep track of FOR ... NEXT loops,
adding to the stack each time a new loop is started.
In this program, line 50 (with the NEXT command
that would decrement the stack) is never reached,
and so the stack gradually fills up until eventually a
'stack overflow' message is generated and the
interpreter stops the program. Errors such as this
are usually easily spotted, but if they appear in
rarely used sections of code thorough testing may
be needed to uncover them.

A more insidious type of error is one that allows

4


