
• X

4øJ 7—B

L. BYTE 0_BYTES._
BYTE 1
BYTE 2

BYTE 7BYTF 15
BYTE 34_2 BYTE 328

RYTF 127BYTF 335

BYTE RO

BYTE RO + 1

BYTE R0+2

BYTE RO
4

3

BYTE RO 4 4

BYTE RO + 5

BYTE RO + 6

BYTE RO + 7

BYTE _312

COMMODORE 64 GRAPHICS/PROGRAMMING PROJECTS 1

Point To Point

The dot pixels that make up
the Commodore 64 hi-res
screen cannot be accessed
directly: the 40 x 25 text
screen is mapped onto 8,000
bytes of RAM, each text
position being described by

eight bytes. A dot pixel's
position is described in hi-res
by X, its distance (in pixels)
from the left of the screen,
and Y, its distance from the
top of the screen. These
numbers must be converted
into the address of the byte
that contains the pixel, and
the number of the relevant bit
in that byte

which corresponding bit in the 8,000-byte
memory map is to be set to one or zero.

The horizontal byte position can be found from
the X co-ordinate by the following command:

HB = INT(X/8)

Similarly, the required vertical byte can be found
from the Y co-ordinate:

VB = INT(Y/8)

The first byte of the character cell that contains the
required bit, RU, can be calculated from HB and VB:

RO = VB*320 + HB*8

The byte that contains the required bit will be RU,
plus the remainder when Y has been divided by
eight. This remainder can easily be found from the
right-most three bits of the value of Y. If A = YAN D7
and BASE is the address of the first byte in the
8,000-byte block, then the address of the byte, BY,
that contains the bit we require can be found:

BY = BASE + RU + A

The bit within the byte BY can be found by
calculating the remainder when the X co-ordinate
is divided by eight. If B = XAN D7 then the following
POKE will set to one the bit that corresponds to the
pixel with co-ordinates X and Y:

POKE BY, PEEK(BY)OR(21(7-B))

Now that each pixel can be individually turned on,
routines can be designed to draw shapes on the
screen. The following program shows how straight
lines can be drawn from one point (X1,Y1) to
another (X2,Y2). A circle may be plotted by
specifying the co-ordinates of its centre (CX,CY)
and the radius RA. There is also a subroutine that
will draw a triangle given the co-ordinates of its
three corners (XA,YA), (XB,YB) and (XC,YC). You
may wish to experiment by entering co-ordinates
other than those given in the program.

It is interesting to note that the structure of this
program consists of a series of tiered subroutines.
The lowest level routine is the one that plots a
single point on the screen. This subroutine is used
by a higher level routine that draws a straight line.
At a higher level still, the PLOT TRIANGLE routine
uses the PLOT LINE routine three times to construct
its three sides. This approach to programming has
many advantages. It is flexible, since it would be
very easy to design a routine to draw, say, regular
hexagons. Such a routine would call the PLOT LINE
routine, which would in turn call the PLOT POINT
routine. Alternatively, the DRAW TRIANGLE routine
could be used to construct hexagons from
equilateral triangles. In this case the DRAW
HEXAGON routine would form a fourth tier to the
program structure.

THE HOME COMPUTER ADVANCED COURSE 255

