
ART 11!MACI E CODE

instruction, we give the symbolic address of the
instruction to be jumped to. This makes the
Assembly language program far easier to follow.
The assembler decodes the symbolic address into
an absolute address, calculates the displacement
necessary to get to the address, and writes that
displacement into the machine code instruction.
The symbolic address is called a label, and it's
analogous to a BASIC program line number.

Let's take a closer look at how labels are used. A
label is an alphanumeric string written at the start
of an Assembly language instruction. It is treated
by the assembler program as a two-byte symbol
standing for the address of the first byte of the
instruction. Therefore. we can re-write the
program given in this way:

4R0 SSEOo

ZBO

5E00 ADC #S34 ADC A,S34
5E02 BEG EXIT JR Z,EXIT

5E04 STA 35E20 LD ($5E20),A
5=07 EXIT RTS RET

The instruction at S5E02 can now be read as `IF the
value of the accumulator is zero THEN GOTO the

address represented by the label EXIT'. This is an
enormous improvement in readability over the
previous version, and greatly decreases the
chance of miscalculating the jump destination.

We can now use labels and the branch
instructions to create a loop:

ORG $5Eao

6502 Z80

5E00 START ADC #534 ADC A,S34
5E02 BNE START JR NZ,START
5E04 STA S5E20 LD ($5E20),A
5E07 EXIT RTS RET

Notice here the use of the new label, START, as well
as the new branch instructions: BNE, meaning
`Branch if the accumulator is Not Equal to zero';
and JR NZ, meaning `Jump if the accumulator is
Not equal to Zero'. Let's consider what effect this
code will have. The program will first add $34 to
the accumulator. If the result is not equal to zero
then the program branches back to S5E00 — the
address represented by the label START. $34 will
again be added to the accumulator, and the result
will decide whether another branch occurs. This
`loop' will go on and on until the branch condition
is met. When the contents of the accumulator do
equal zero following an ADC instruction, then the
branch at S5E02 will not occur, and the instruction
at $5E04 will be executed next.

This is exactly like an IF..THEN GOTO... loop in
BASIC, except that it's difficult to see how the
accumulator could ever become zero. After all, it
is being increased by $34 every time the loop is
executed! How will it ever add up to zero? The
answer lies in the fact that the accumulator is only
a single-byte register, and if the addition results in
a two-byte number, then the carry flag of the
processor status register will be set, and the
accumulator will hold the to-byte of the result. If

the accumulator contains SCC, for example, then
adding $34 will give the two-byte number $0100.
The carry flag will be set, and the accumulator will
hold the to-byte of this result — $00. Thus, the
contents of the accumulator would be zero, and
the zero flag set as a result.

With this result in mind, we might re-write the
program to use a different branch condition,
incorporating the state of the carry flag rather than
the state of the zero flag.

ORG $5E00

6502 zeo

5E00 START ADC #S34 ADC A,S34
5E02 BCC START JR NC,START
5E04 STA $5E20 LD ($5E20) A
5E07 EXIT RTS RET

In this version, the instruction at $5E02 reads `if the
carry flag is clear, branch to START'. As soon as the
result of adding $34 to the accumulator is greater
than SFF, then the carry flag will be set, and the
branch back to the START address will not occur.

LOOP COUNTERS
It may seem that branching according to the
current condition of either the carry flag or the
zero flag is a rather limited facility, but it permits a
wide range of decision making, as we shall shortly
see. What is definitely lacking from our repertoire
now is the ability to keep a loop counter. We might
wish, for example, to count the number of times
that a loop is performed before the exit condition
occurs, or we might want to cause an exit from the
loop after a given number of iterations. The first
objective is easily achieved by employing a CPU
index register to hold the counter, and an
increment instruction to update the counter:

6502

0000 ORG SSDFD
5DFD LOX #SOO
50FF START INX
5E00 ADC #$34
5E02 BCC START
5E04 STX S5E20
5E07 EXIT RTS

The new structure has forced several changes in
the program. Firstly, the instructions inserted at
the beginning of the program require a new ORG
address. These instructions have much the same
effects on both the 6502 and the Z80 processors,
but their lengths are different, so the location
addresses are no longer the same in both versions
of the program.

Secondly, new versions of the load (LOX, LD IX)

and store (STX, LD(),IX) instructions have beer
used to place an initial value of $00 in the CPU

no

0000 ORG S5DFA
5DFA LD 1X,$0000
5DFE START INC IX
5E00 ADC A,S34
5E02 JR C,START
5E04 LD (S5E20,IX
5E08 EXIT RET

THE HOME COMPUTER ADVANCED COURSE 217

r

