
STRAIN GAUGE

PROXIMITY SENSOR

ROBOTICS/APPLICATION \....

entirely — typically revolute co-ordinates. So
the robot must be able to solve some tricky
geometrical problems in order to work efficiently.
And, in the case of industrial robots that must
move objects weighing several hundred kilograms
over a large distance, the saving in time and energy
by choosing the best route can be considerable.

Another problem facing the point-to-point
robot is the dynamics of the arm itself. Move your
own arm to pick up an object and you will find that
it accelerates slowly away from its original position
until it reaches maximum speed, then decelerates
until it comes to a smooth stop at its final position.
The advantages of a robot arm that does this are
considerable. Many such arms move at a constant
speed, accelerating almost immediately to
maximum velocity and stopping dead at the end of
the movement sequence. This places strain on the
arm itself and requires more power than an arm
which accelerates and decelerates smoothly. It also
means that the arm may not move as quickly as it
could otherwise do and, if at the end of the
sequence the robot were required to pick up a
delicate object, even a slight displacement of the
object could result in the arm hitting it with
considerable force. So the robot needs to work out
an optimum speed as well as an ideal path to
follow.

ROBOT CHOREOGRAPHY
Even after the arm has been programmed to
follow a precise set of movements, it may turn out
on playback that these movements were not quite
what was required. This may be because of human
error, because the nature of the task has changed
slightly, or because, if the robot is working in
conjunction with other arms, the arms may follow
their own paths and collide with each other.
(Avoiding this latter problem is known as 'robot
choreography') So a method of editing the
sequence is required. This can be achieved by
storing the movements as a linked list, in which
each position is stored and followed by the address
at which the next postion is to be found. In the
initial training session, this address will be the
address of the next position in the list. If the
sequence needs to be edited, the arm could be
moved to the position at which corrections need to
be made, stopped, and a new sequence inserted.

Another common method of making arms
move intelligently is to use a series of programmed
instructions stored in the computer. Typically,
each robot has its own programming method and
uses a different programming 'language' to control
movement, but in general a language is required
that enables the programmer to use Loco-like
commands to specify movement in three
dimensions, with added instructions for wrist and
end effector movement, such as 'pick up' or 'put
down'.

The problem is similar to training a point-to-
point robot, and many factors need to be taken
into consideration. For instance, if a robot arm is
to move forward 10 units then the obvious method

would be to alter the shoulder joint so that the arm
can reach further forward. However, this would
cause the arm to move upwards in an arc, and so
this must be corrected by a downward movement
in the elbow joint. From this it can be seen that the
instruction for just one simple movement must be
translated into two distinct sets of instructions,
working on two separate joints.

Other problems can arise when the robot is
required to pick up an object. However well the
arm is positioned, it is difficult to ensure that it is in
exactly the right place to pick up the object,
particularly if that object is of an asymmetrical
shape. An 'intelligent' hand is therefore needed —
this must sense the presence or absence of the
object, the distance of the object from the hand,
and the force exerted by the hand when it tries to
pick the object up. These problems may be tackled
by equipping the hand with a range of proximity,
tactile and force sensors, which provide feedback
that enables the controlling computer to make any
necessary corrections.

If all these problems are considered, we can see
that it is possible to construct a robot arm that
shows a relatively high degree of 'intelligence'.
However, as yet no arm can be designed to, say,
bowl a cricket ball accurately. This is because the
arm's intelligence alone is not enough. The robot
must also know the state of the pitch, the position
of the batsman, the wind strength and direction,
and a host of other variable conditions. Then, of
course, it will need to be able to work out the very
complex equations involved in sending a projectile
through the air. For such tasks, much more than
just an intelligent arm is required.

Gently Does It
Picking up an egg is a searching
test of the robot arm's sensors
and feedback control
mechanisms. The grippers
proximity sensor must check
that the egg is close enough to
grasp, then the lingers can start
to close until the touch sensors
indicate contact with the egg.
The output of the touch sensors
must now be checked against
that of the proximity sensor as
the fingers close and the arm
begins to lift. A sudden
decrease in proximity shows
that the egg is slipping, so the
fingers must tighten until a
preset grip-force limit is
reached or until sudden
decrease in grip-force shows
that the eggshell is distorting
prior to cracking

THE HOME COMPUTER ADVANCED COURSE 703

