
NESTED INTERRUPTS

• INTERRUPT 1 ,i: NTERRUPT
SERVICE ROUTINE •!!°' qa •

i; • Arn
[
I I

1111r77"."11: :•••ive•v—,J

I I
I

INTERRUPT 2

INTERRUPT 3

INTERRUPT 4

11111MM7171

QUEUED INTERRUPTS

CURRENT PROGRAM

PROGRAM MEMORY

debugger replaces the instruction displayed by
the breakpoint SWI, and continues with the
program from that point.

The 6809 has three separate interrupt
mechanisms: IRO (Interrupt ReQ u est) , Fl R Q (First
Interrupt ReQuest) and NMI (Non-Maskable
Interrupt). These are all activated by the
appropriate signal being received on three pins on
the processor chip. The bar above the name (in
IRQ, for example) indicates that they are activated
by a zero signal at the processor, rather than a
one. These three pins are connected to the main
bus so that peripheral chips like the 6820 and
6850 can have their interrupt request output pins
connected to the same bus lines. When the chips
are programmed, the interrupts can be enabled
and then the appropriate signals will
automatically be sent.

There are also three software interrupts caused
by the SWI, SW12 and SW13 instructions.

When an interrupt occurs, control passes to the
vector address contained in a specific location at
the top of memory. These vector addresses are
usually found in ROM, so control will always pass
from there to the same fixed address. However,
this address will normally be in RAM and will
contain a J MP instruction, so that the final
destination can be changed to the user's own
service routine. The memory locations are:

Interrupt Type Vector
NMI SFFFC

SWI SFFFA

$FFF8

FIRO SFFF6

SW12 $FFF4

SW13 $FFF2

It is also worth noting that the top two bytes of
memory — $ FFFE and $ FFFF — contain the reset

 MACHINE CODE/6809 CODE

Intertupted Interrupts
Ian interrupt occurs during an

interrupt, one possible solution
is for the processor to 'nest the
interrupts: whenever an
interrupt occurs, PC is stacked
and the new interrupt is handled
immediately and control returns
to the stacked address. The
li mits on this nesting are the
capacity of the slacks, and the
ability of the interrupt-
generating devices to withstand
delays in processing their
interrupts.

An alternative is for the
processor to stack the details of
any interrupt on an interrupt
queue. When the first interrupt
is complete, the processor
inspects the queue, processes
any interrupt it finds there until
the queue is empty, and
eventually passes control back
to the program

interrupts would be given priority and under no
circumstances masked — thus giving rise to the
concept of a non-maskable interrupt. Such an
interrupt might come from a circuit that detects a
drop in the mains supply voltage: its service
routine would immediately start saving the
current task while power remained.

When interrupts can occur from more than one
source, we must consider the possibility of nested
interrupts. If an interrupt occurs while the
processor is in the middle of servicing another
interrupt, there are two possible strategies for
handling it. First of all, the new interrupt could be
ignored until the current one is completed.
Secondly, interrupts could be ranked on a scale of
urgency, so that a high-priority interrupt could
override the handling of one with a lower priority.
In this case, the operating system would have to
be able to deal with the nesting of interrupt
service routines.

SOFTWARE INTERRUPTS
The SWI instruction, which we briefly mentioned
on page 577, can be used in a program as a
convenient way of returning to the operating
system by generating its own interrupt — called
the 'software interrupt' (as distinct from the
hardware-generated interrupts we have been
discussing so far). SWI instructions can also be
used to act as breakpoints in a machine code
program to aid in debugging; this facility is
provided by many ROM-based machine code
monitors, as well as debugging packages. The
user chooses points in the code where program
execution is to pause, and the instructions at these
locations are replaced with SWIs. When the
program is run, the interrupt service routine then
allows the programmer to inspect and possibly
alter the contents of registers and memory
locations, and see exactly what the program is
doing. When execution is resumed, the monitor/

698 THE HOME COMPUTER ADVANCED COURSE

