
back into the carry flag. Notice that the ROL in line
1100 is used in the absolute indexed addressing
mode so that each of the 63 sprite bytes in turn is
accessed and analysed in this way.

Once the routine has isolated a particular bit
and decided whether to plot a point or a space,
the job of actually plotting to the screen has
to be done. There are two methods of doing
this on the BBC Micro. The first method is to
POKE values directly into the area of memory that
controls the screen display. On the BBC, this is
not as easy as it sounds. Two main problems
occur. Firstly, the screen memory areas vary
between model A and model B machines, and
between modes. Secondly, the mathematical
relationship between pixels and bits in screen
memory is very complex. For example, in mode 2
each byte of memory controls only two pixels on
the screen. As this mode supports 16 colours,
each pixel needs four bits to define its colour. In
mode 0, however, a two-colour mode, each pixel
requires only one bit for definition. Designing a
routine to code our sprite format into mode 2
format would be feasible, but the routine would
then only work in mode 2.

Fortunately, there is an alternative method.
When dealing with graphics in BASIC, the BBC
operating system has to do the sort of
manipulations that we require. We can access this
operating system routine to do most of this
difficult work for us. In addition, a routine written
using this operating system call will work in all the
graphics modes. The routine works in the same
way as a VDU command in BBC BASIC. For
example, to plot a single point on the screen, the
following VDU command could be used:

VDU25,68,300;700;

Here, the x and y co-ordinates are specified by the
numbers 300 and 700 respectively. This VDU
command can be duplicated in machine code by
using the operating system call OSWRCH. This call
is made repeatedly after first placing a number in
the accumulator. Because the accumulator can
only hold one byte at a time, the x and y co-
ordinates must be split into LO-byte/HI-byte
form as follows:

VDU25,68,44,1,188,2

To perform this command in machine code,
OSWRCH needs to be called six times. The vector
to the start address of OSWRCH is held in location
&FFEE, and the routine is accessed by JSR &FFEE.
Any VDU command can be done in this way, and
this routine uses OSWRCH calls in several places.
Note that whereas OSWRCH does not affect the
values of the X, Y and A registers, it will alter the
contents of the carry flag. Hence, when
preservation of the carry is required, the contents
of the carry must be stored away before OSWRCH
is called. This is the case with the ROL routine. The
easiest method of preserving the carry is to push
the processor status register onto the stack (PHP)
before calling OSWRCH, and pull it off again

ADVANCED COURSE

afterwards (PLP).
Let's now look at the structure of the machine

code routine. The main analysis of sprite data and
plotting to the screen are performed using the
subroutine SPRPLT, starting at line 890 in the
source code. The first operation of this routine is
to set the method of plotting as an Exclusive OR
operation. This is entirely similar to the GCOL
command in BBC BASIC. Points plotted in this
way can be erased by simply replotting over the
top. Any screen data under the sprite will
therefore be left intact. At the start of the machine
code an absolute move is made to position the top
left hand corner of the sprite. Each row is then
analysed by taking three bytes of sprite data and
rotating them as described earlier.

A relative plot or relative move is made over a
distance determined by a horizontal scaling
factor, XSCALE, depending on the value of the
data bit currently in the carry. At the end of each
row of three bytes an absolute move is again
made, to the same x co-ordinate as the sprite's top
left corner, but to a reduced y co-ordinate
determined by a vertical scaling factor, YSCALE.
The process is repeated until all 63 bytes have
been analysed.

The SPRPLT subroutine is used in two places.
Firstly, to erase the old sprite by replotting over it,
and secondly to plot the new sprite. After plotting
the new sprite, its co-ordinates are transferred to
OLDX and OLDY in preparation for the next time
the routine is used.

Using The Machine Code
Routine From BASIC
The routine can be easily used by BASIC
programmers without needing to understand the
routine itself. The steps that must be carried out are
as follows:

1)Design your sprite and place the data in an area of
memory as shown in the program
2)Set the display mode you wish to use
3)Set the values of XSCALE and YSCALE as shown in
line 1870
4)Set the logical colour for the sprite as shown in line
1890
5) Set the x and y co-ordinates of the position you
wish the sprite to appear in and use the procedure
given at lines 2010 to 2060 to convert absolute co-
ordinates into LO-byte/H1-byte form.
6)CALL SPRITE

The machine code routine can be incorporated into
your BASIC listing, as here. The assembler listing can
be suppressed by changing line 260 to:

FOR optcY0=0TO2STEP2

Alternatively, you can save the routine once
assembled (i.e. after a run) using the *SAVE
command, taking careful note of the start and end
addresses of the code given as the assembly listing is
displayed.

Erratum
The program segments given in
the boxes at the bottom of page
295 for Inserting and Deleting a
record in a BASIC array were
inadvertently transposed. Lines
100-190 are used for inserting a
record, and lines 200-250 for
deleting a record from the array.
The program lines and captions
are otherwise correct

378 THE HOME COMPUTER


