
LISSAJOUS FIGURES

FIGURE IT OUT
In this instalment of our Loco course, we
look at the facilities the language offers for
working with numbers. LOGO would
probably not be the first choice of language
for applications that require a lot of
calculation, but it does offer an impressive
array of numerical primitives.

.811111

Almost all Loco implementations support both
integer and real (decimal) arithmetic, using the
infix operators + - * / . These operators are called
'infix' because they are written between the
numbers they work on — for example, 3+4.
Some LAGOS also include 'prefix' arithmetic, in
which our example would be written as SUM 3 4.
One advantage of this notation is that it is
consistent with the way in which other woo
operations and commands are written.

MIT woo supports infix arithmetic only, but it
is simple to program prefix forms if they are
required. Define SUM and PRODUCT and try them:

TO SUM :A :B
OUTPUT :A + :B

END

TO PRODUCT :A :B
OUTPUT :A " :B

END
The 'precedence' of operations (the order in which
they are carried out) follows the usual
mathematical rules. Anything within brackets is
done first, followed by multiplications and
divisions, and finally additions and subtractions:

PRINT (3 + 4) * 5
PRINT 3 + 4 * 5

Now try the prefix forms:

PRINT PRODUCT 5 SUM 3 4
PRINT SUM 3 PRODUCT 4 5

This demonstrates another advantage of the prefix
forms — there is no need for rules of precedence
and the line is evaluated in the same way as any
other line of Loco commands.

The usual division operation (/) gives the result
as a real number. Two other operations, QUOTIENT
and REMAINDER, are often useful for working with
integers.

QUOTIENT 47 5 is 9
REMAINDER 47 5 is 2

A standard method for converting a number in
base 10 to binary is to keep dividing the number by
two until the result is zero. The binary number is
found by writing the remainders found at each

stage in reverse order. For example, to convert 12
to binary:

12/2 = 6; remainder = 0
6/2 = 3; remainder = 0
3/2 = 1; remainder = 1
1/2 = 0; remainder = 1

So, reading the remainders upwards, we find that
decimal 12 is 1100 in binary.

Using QUOTIENT and REMAINDER we can
implement this technique easily in Loco. By
putting the print statement after the recursive call
we get the remainders printed in the correct
(reverse) order.

TO BIN :X
IF :X = 0 THEN STOP
BIN QUOTIENT :X 2
PRINT1 REMAINDER :X 2

END

Two operations exist for rounding numbers —
INTEGER and ROUND. INTEGER outputs the whole
number part of a number, simply ignoring any
figure after the decimal point, and ROUND rounds a
number up or down to the nearest whole number.

The following procedures calculate the
compound interest on an investment at a given
rate of interest. In PRETTY. PRINT, INTEGER is used to
get the pounds, and ROUND is used to round the
pennies to the nearest whole number.

TO COMPOUND PRINCIPAL :RATE :YEARS
IF :YEARS 0 THEN PRETTY.PRINT
:PRI NCI PAL STOP
COMPOUND PRINCIPAL (1 + :RATE / 100)

:RATE :YEARS — 1
END

TO PRETIN.PRINT :MONEY
MAKE "POUNDS INTEGER :MONEY
MAKE "PENCE ROUND (:MONEY —

:POUNDS) *100
(PRINT :POUNDS "POUNDS :PENCE

"PENCE)
END

TESTING TIME
We have already used < , and > as logical tests
in a number of procedures. The logical operations
ALLOF, ANYOF and NOT can be used to combine
other tests. ALLOF is true if both its inputs are true,
ANYOF is true if either of its inputs is true, and NOT is
true if its input is false. So we get:

IF ANYOF :X> 0 :X = 0 THEN PRINT "POSITIVE
IF NOT :X < 0 THEN PRINT "POSITIVE
IF ALLOF :X> 0 :X < 100 THEN PRINT

[BETWEEN 0 AND 1001

THE HOME COMPUTER ADVANCED COURSE 735

