

Steps Towards A Smooth Scroll To achieve smooth scrolling，we can use a special tacility offered by the Commodore 64＇s video control chip－VIC－which has special scrolling registers that allow the visible screen to move from its normal position relative to the border Single pixels in the horizontal or vertical direction can be produced Combining this effect with character copying in machine code，we can produce smooth scrolling on a reduced 38 －column screen

A pointer to the memory area is initially set to point to the byte at the beginning of the memory area to be scrolled onto the screen．Once the first column has been scrolled on，then the pointer can be incremented by one to copy a second column onto the right－hand edge of the screen，from where it can be scrolled to the left．After this process has been repeated 40 times，a complete screen of data will have been scrolled on．The memory pointer should then be increased by 960 （1000－40）to point to the beginning of the next screen．

This process must be duplicated for the corresponding area of colour data．To simplify this，we should make the address of each byte in the colour map have a constant offset to the address of the corresponding byte in the screen data map．The process can be repeated for as many screens of data as have been designed and held consecutively in memory．

In order to use the scroll routine，several pieces of information must be passed before calling it． The routine needs to know：
1）The start address of the memory area where the screen data to be scrolled is held．
2）The offset to the corresponding colour data．
3）The number of screens of data to be scrolled on．
4）A delay value，used to slow down the smooth scroll operation．

This data should be POKEd to the locations set aside in the machine code program．

```
Basic Calling Program
1\ REDM **************************
0:
OS UN=E:REM FOR CAESL DNN=1
100 IFA=ИTHENA=12LOAD"SCAOLL , HEX'.DN, 1
110 FIWES5, 6:POLES6,32:CLRIREH LIWEF MEMTDF
115 REMGOSUBLDM#2REM SET UP STMFLE DIGPLAY
130
BO LMEM =AपSbA: REM START OF MEMORY
1404 HMEM =49665: REM AREH
150 LCOFF =49606: REN OFFSET TE COLDUR
160 +HCOFF =49667: REM MAF
170 NMSCR =49666: RENH NUMEER OF SCREENS
rem delar valute
REM FROG START ADDRESS
20}\mathrm{ REM FRINTCHR* (147):REM ELEAR SCREEN
250 INPUT"DECIMAL START ADDRESS",SA
240 HS=1NT (SA/2S6):LS-S0-HS*256
250 POKELMMEM.LS:POKEHMEM+HS
260,
270 INFUT"NUMBEF OF SCREENS";NS
290 POKE NHSCR,NS
300 :
310 INFUT-DECIMAL OFFSET TO CDLOUF MAFM3OS
32(0) HO=1NT (0S/25b);LO=05-H(C) +256
$30 POFELCOFF,LD2PDKEHCDFF,HD
340:
750 INPUT"DELAY VALUE - 256":DV
360 IF DV }255\mathrm{ OR DVFD THEN S50
350 FOKEDELAY,DV
360 :
3日6 % Syg ScROUL
400 FOKESS270, PEEK (532701GRE
```

The program loads the machine code into memory and asks for the information required via INPUT statements．The program splits this information into LO－byte／HI－byte form where necessary and POKEs it to the storage spaces allocated at the beginning of the machine code program．The machine code routine is then called．

Any start address，offset and number of screens may be specified，although the results will not be very meaningful if you don＇t put any screen designs in the memory area specified．You can test your program by loading and running the short BASIC program that sets up two simple screens of data starting at location 8192．The offset to the colour data area is 3,000 bytes．To scroll this data area onto the screen，the following information must be given in response to the prompts from the calling program：
1）Decimal start address：
8192
2）Colour offset：
3000
3）Number of screens：
2
4）Delay：
255

Basic Loader

Set Up Display Routine

```
1600 REH \(* * *\) SET LIF DISFLAY＊＊＊＊ \(1010 \mathrm{CL}=300 \mathrm{O}\) EREM DEFSET TO CLLDUA HAP
```



```
Q40 POVE ，\(=\) FEH SCREEN CODE FOR A
```



```
TWbण PDNE \(1+4 B 0,2\) FFEM GCREEN CODE FGR
\(1070 \mathrm{POKEI}+\mathrm{CL}+4 \mathrm{BC}, 141 \mathrm{REH}\) LIGHT BLUE
1070
\(10 日 D_{\text {NEXT }}\)
TOES FGR \(=5 S+7601055+997\)
1 DFO POKEL， 3 ：REM GEREEN CDDE FDR \(C\) C
11 100 PIKE + Cl， 3 REEH EYAN
1100 PUKE
1119 NEXT
1119 NE
1999 ．
2990 ；
2000 SE－91923REM NENT BCREEN START
2030 FORL＝SS TO SS +479
2040 FUKEI，SOKEM SCREEN CODE FOR＇C＇
2QS PDKE + LL，INREM GREEN
```



```
2070 POKEI \(+C C+480,0\) REH BLACK
2W日G NEXT
60．\(F\) ORI \(=55+960 T 15 S+940\)
2090 PGKEI，SJREH SEREEN CODE FOR＇E＇
21400 POKE1＋CL，2，REM RED
2110 NEST
```

