
request). The name given to the first type of
interrupt implies that there is nothing that can be
done to stop these interrupts occurring, but it is
possible to stop IRQ interrupts that are not vital to
the functioning of the processor.

IRO interrupts can be masked by setting a
particular bit in the processor status register to
one. This is done by the instruction SEI. IRO
interrupts can be re-enabled by resetting the same
bit using CLI. If we mask the IRQ interrupts before
entering the delay loop, we can improve its
accuracy. If a non-maskable interrupt occurs
during execution then this will cause errors in the
timing. Our original delay loop listing should be
altered as follows to mask interrupts:

INSTRUCTION FUNCTION TIME TAKEN

SEI Disable IRQ Two cycles

LDY #$07

36 cyclesDEY

BNE LOOP

Re-enable IRQCLI Two cycles

Masking the IR Qs in this way adds another four
cycles to the routine, which will now cause a total
delay of 40 microseconds, assuming that no NM's
occur.

Another aspect of delay loops is that of
'resolution' — that is, how the time taken to
execute a delay loop varies between one counter
value and the next. In our example routine, we
loaded the Y register with a value of seven, but if we
had used a value of six instead, the delay time
would have been 35 microseconds (2 + 2 +
(2+3)><6 — 1 + 2). A value of five in the Y register
would have taken 30 microseconds and so on
to a minimum resolution of five microseconds.

We can 'fine-tune' our program (to give timings
other than multiples of five) by placing NOP
instructions outside the loop. An NOP instruction
means the processor will perform 'No OPeration',
and take two cycles to do it. If we wished to create a
delay of 44 microseconds, for example, two NOP
instructions could be added to our program before
(or after) the loop:

SEI Two cycles
LDY #$07 Two cycles
NOP Two cycles
NOP Two cycles
DEY

BNE LOOP
34 cycles

CLI Two cycles

-
 MACHINE CODE/TIMING ROUTINES

NOT SO FAST

We have often stated that the main
advantage of machine code is the speed with
which programs are executed. However,
Assembly language programmers often find
that their programs run too fast, and they
need to insert time delays to slow them
down. We look at the most popular methods
for creating 6502 and Z80 software delays.

Delay loops can be implemented in 6502
Assembly language in several ways. The most
obvious and simple method is to load one of the
index registers with a value and decrement it
within a loop until it reaches zero:

DELAY LOOP TIME TAKEN FOR EACH OPERATION

LDY #$07 Two cycles

DEY Two cycles

BNE LOOP Two cycles
(3 cycles if branch to same page;
4 cycles if branch to different page)

Each machine code instruction takes a particular
number of clock cycles to execute. Information
about these can usually be found with the
descriptions of how the instructions operate. For
example, the D EY instruction takes two cycles and
LDY in immediate addressing mode also takes two
cycles. As each cycle takes one microsecond (a
millionth of a second), we can calculate the 'real
time' taken to execute the delay loop. The total
number of cycles can be calculated as follows:
1) The LDY #$07 instruction takes two cycles.
2) The program branches back seven times. Each
time there is a branch back then the BNE operation
takes three cycles: hence the DEY and BNE
instructions take (2+3)X7 = 35 cycles.
3) But the last BNE does not branch back and,
therefore, takes only two cycles.
The total number of cycles is, therefore, 2 + 35 — 1
= 36. The time taken to execute the delay is thus
36 microseconds.

There are several problems associated with
using machine code delay loops to cause 'real time'
delays (that is, delays that can be measured
accurately in seconds or microseconds). The first,
and most important, is that while a processor is
executing a machine code program it regularly
suspends this activity to service other parts of the
system, such as scanning the keyboard, updating
the internal clock, and so on. These breaks in
program execution are known as 'interrupts', and
two types of interrupt occur on the 6502 chip: NMI
(non-maskable interrupt) and I IRO (interrupt

478 THE HOME COMPUTER ADVANCED COURSE

