
6 FILE INPUT
7 INSERT

I 9 SORT

8 MODIFY

9 SORT

10 DELETE

19 SORT

1 MAIN PROGRAM
MAIN

PROGRAM
1

VALIDATE

SAVE
4

PRINT
5

SORT
9

INSERT
7

MODIFYDELETE
10

KEYBOARD
INPUT

2

FILE
INPUT

6

V

not be ambiguous in any way. Ambiguity is easy
to introduce at an early stage when the algorithm
is being written down in English. Words like 'and'
and 'or' in English are very different from the
AND and OR of Boolean logic. For example, if
the algorithm was meant to select all the names in
a list that begin with an 'A' andall those beginning
with 'B', you could easily write code like:

IF FIRSTLETTER="A" AND FIRSTLETTER="B" THEN

which is wrong because a logical OR is needed!
The criterion of effectiveness is a demand that

the program should not contain impossible
instructions. An instruction is said to be effective
if it can be done with a pencil and paper in a finite
time. This means that instructions like let X equal
the highest prime number' are not effective (there
isn't a highest prime number).

GENERAL CONSIDERATIONS
There are also criteria to judge the algorithm as
a whole. An algorithm must terminate. The
algorithm that follows does not terminate (even
though its instructions are definite and effective)
and if this was coded into a program it would
endlessly loop:

step 1 let I equal 1
step 2 if I > 3 then exit
step 3 goto step 1

Telling whether an algorithm will terminate is not
always easy, but, in general, algorithms that
involve loops test for a particular condition
before they terminate (e.g. if I > 3 in our
example), and it is necessary to check that it is

possible to meet that condition.
Efficiency, generality and elegance are ways of

judging between different algorithms. Efficiency
is usually judged in terms of time and memory
use. The two are usually quite compatible — fast
code may need relatively little space, but bear in
mind that this need not be so. Having found an
algorithm, it can be 'tuned' for efficiency by
changing its details. A calculation will be
noticeably faster and will use less memory if, for
example, integer rather than floating point
arithmetic is used. Alternatively, a completely
different algorithm for doing the same thing could
be found.

Generality is the ability of an algorithm to cope
with many different situations apart from the one
for which it was designed. It is worth while, in the
long run, to attempt to make all algorithms as
general as possible. If a program called for a yes/
no response several times, it would be worth
writing a routine that prompts the user with
'please type y or n', accepts the input, checks
whether it is 'y' or 'n', reprompts if it is neither and
otherwise returns the appropriate response.
However, the routine could be made more
general if it could be fed with different prompts
and potential replies, so it could be used in many
different situations. Elegance means finding
algorithms that are both simple and ingenious. In
all cases it is more sensible to find efficient,
general algorithms rather than elegant ones.

Another important aspect of algorithms is the
flow of control and of data within them and how
this can be represented with flow charts. This is
the subject of the next instalment in this series.

Pyramids And Primitives
The block-structure diagram on
the left clearly shows the
nesting of a program's
algorithms, while the procedure
flow diagram on the right
emphasises the articulations
and process levels of the same
program. The most 'primitive'
algorithms are the most deeply
nested, and the lowest in the
hierarchy

THE HOME COMPUTER ADVANCED COURSE 387


