
n••••

111.
••n•

4111.

••• ••••••••
•••n

11111.

111•5.11110

•nn••

MA'
CA' cs

181

PROGRAMMING PROJECTS/BBC GRAPHICS

BBC BASIC allows us to test any point on the screen
to see if that point is lit in a certain colour.
POINT(X,Y) will return the colour of the pixel at
position (X,Y). We can use this to see if the colour
of the cell we are about to move into is green (i.e. it
contains a mine). There is only one snag.
POINT(X,Y) uses the high-resolution co-ordinate
system to specify the point to be looked at. If we
want to use this command for our game we must
first convert our character cell co-ordinates into
grahics co-ordinates. The easiest point in the cell
to specify would be the centre.

In the last section we worked out that in mode 5
each character cell is 64 graphics units wide and 32
graphics units high (see page 404). Multiplying
xchar by 64 will give the xgra ph co-ordinate of the
edge of the cell in question. Adding a further 32 to
xgraph will give the x co-ordinate of the centre of
the cell. Calculation of ygraph is rather more
complex as the two systems run in opposite
directions. At the top of the screen ygra ph is 1023.
Working down, 32*ychar would bring us to the top
of the specified cell; moving down a further 16
units would bring us to the y co-ordinate of the
centre of the cell. The following procedure can,
therefore, be designed to convert character co-
ordinates to graphics co-ordinates:
3720 OEF PROCconvert(xchar,ychar)
3730xgraph.64.xchar.32
3740ygraph.1023-(32.rchar.16)
3750ENDPROC

We can see the true value of being able to pass
parameters between procedures if we look back to
the procedure 'move'. The 'convert' procedure is
used twice: first of all, to convert the co-ordinates
of the assistant into graphics co-ordinates, and
these values are then used in line 3390 to test for
the colour green. (Remember that although the
assistant's co-ordinates have been updated, the
character has not yet been PRI NTed in its new
position.) If the colour present is green then the
program jumps to another procedure to display an
explosion. The 'convert' procedure is used for the
second time in line 3400, but in this instance the
character co-ordinates of the detector are
calculated. Line 3410 then tests to see if the cell is
occupied by a mine. If it is, the procedure 'found-
mine' is called. Finally, the detector and the
assistant are PRI NTed in their new positions by
calling 'position-chars'.

We shall be looking at the procedure 'explode' in
the next instalment, and so for now let us put a
dummy procedure in its place. Type in the
following lines:

3550 DEFPROCexplode(x-explode,y-explode)

3560 PRINT BANG"

3570 END

3580 ENDPROC

Let's finally look at the procedure 'found-mine',
called when the detector moves into a cell
occupied by a mine. A sound effect to indicate
finding a mine would be a nice idea. We shall be
looking in more detail at sound later in the project,
so for now all we need to know is that the SOUND

statement in line 3790 produces a high-pitched
'ping'. The main function of this routine, however,
is to increment the player's score. The program
uses two variables for the score, the first of which is
a numeric variable that is incremented by 150. So
that the score is always PRI NTed as a five-digit
number, we must add leading zeros to its numeric
values. In order to do this, we must first convert the
numeric value of the score to a string variable and
then use string-handling techniques, as described
earlier in the project (see page .404) to add on
leading zeros. The complete procedure is:
37700EF PROCfound_mine
37808E1'l 4 SOUND EFFECT
3790801.0.10 2,-15,170,3
3800REM •0 INCREMENT SCORE
381000LOUR 2
3820score=score.150
3830scoreS=STRS(score)
3840 scor.f.LEFTV.ervi,5-LEMscore.)).0c0rei
3850PRINTTA8(11,28);score$
3860ENDPROC

In the last part of the project, we wrote a short
calling program for the procedures we have
written so far. The procedures we have given here
can be added to your program with the line
numbers shown. The only alteration we need to
make, at this stage, to get the program to run is to
call the procedure lest-keyboard' from within the
main loop of the calling program. Therefore, you
will need to add the following temporary line to
your program:

55 PROCtest-keyboard

"BANG" On Target
At this point in the Minefield project, the program
will fill the screen with randomly placed mines;
create your character and a mirror image; define
score tables, and provide movement. Because the
program is not complete, if you run into a mine you
will only see the word "BANG" printed on the
screen. In the next instalment of this project, we
will design a routine that creates an actual
explosion with attendant sound effects. It is also
possible that you may encounter error messages at
particular points in the game's execution. These
messages arise because of the incomplete structure
of the game, and will be cleared up as the final
subroutines are added in the next instalments. Still,
we have reached a point where the program has
assumed the characteristics of a fast-action game

436 THE HOME COMPUTER ADVANCED COURSE


