Basic Programming

bound to pass) and the subroutine RETURNs to the
main program skipping the rest of the *CHOOSE"
subroutine since it is inappropriate.

You may have wondered why TESTS is tested
twice. This is to prevent the subroutine RETURNing
to the wrong point in the program. Without line
3530, the program would continue on down the
rest of *CHOOSE*, presenting the choice menueven
though it is not needed. It also avoids the use of
GOTOs, though IF TESTS = “@FIRST" THEN GOTC 3850
would work just as well. GOTOs make the program
messy and difficult to follow (programs making
excessive use of GOTOs are referred to as ‘spaghetti
coding).

Before going onto look at *FIRSTM*, readers are
referred back to *RDINFL* and the GOTO in line
1430. Since we have consistently argued against
using GOTO, why has one been used here? It would
have been perfectly easy to CLOSE the file and
RETURN by simply testing the value of TESTS in two
separate lines. We used a GOTO here instead to
illustrate one of the few instances where its use is
excusable. This is within a very short and
identifiable program segment, and its function is
obvious (and made more so by the REM comment).
GOTOs should never be used to jump out of a loop
(this can leave the value of variables in an
unpredictable state), never used to jump out of a
subroutine (this will confuse the RETURN
instruction unless a matching jump back into the
subroutine is used), and never used to jump to
remote regions of the program (this makes the
program all but impossible to follow).

The °‘FIRSTM* subroutine is simple and
straightforward: the screen is cleared and a
message is displayed informing the user that a
record will have to be entered. Line 3870 sets CHOI
to 6 so that when control is passed back to
“EXECUT* the *ADDREC" routine will be executed
automatically. The code for *HRSTM" follows:

(DTSPLAY

The "ADDREC* subroutine, given on page 379, has
two small but important changes from the version
we encountered before. After the fields have been
entered as elements in the various string arrays, the
variable SIZE is incremented and TESTS is set to a
null string (see lines 10090 and 10100). SIZE is an
important variable used in various parts of the
program so that it knows which records are being
operated on. SIZE was originally set to 0 as part of
the *CREARR* subroutine. Later, in "SETFLG", itis
set to 1 if TESTS = “@FIRST". This is done so that

A 378 THE HOME COMPUTER COURSE

when *ADDREC* is first executed, the INPUT
statements will put the data into the firstelement of
each array. In other words, INPUT “ENTER
NAME”;NAMFLDS(SIZE] is equivalent to INPUT
“ENTER NAME";NAMFLDS(1).

Line 10090 increments SIZE, so that it now
becomes2. If “ADDREC" is executed again, data will
be entered into the second element of each array.
Finally, "ADDREC* sets TESTS to * " in line 10100.
This is done because a record has now been
entered (though not yet stored in the tape or disk
data file). If *CHOOSE" is executed again, asit must
be to save the data and exit the program, we will
not want to be forced to add a new record again. If
TESTS were not cleared, the program would get
stuck in an endless loop, and the only way to get
out of it would be to reset or unplug the computer,
and all the data would be lost.

By setting TESTS toa null string, the testsin lines
3520 and 3530 of *CHOOSE* will fail and allow the
options menu to be displayed. What then happens
to $IZE will depend on which routine is executed.
So far we have only ensured that SIZE = 1 if there is
no valid datain the file, and that this is incremented
by 1 each time a record is added. But what would
happen if there had been a number of valid records
in the file? To answer this we'll have to look at
*RDINFL" again.

Line 1420 reads the first data item into TESTS. If
itis not @FIRST, itis assumed to be a valid data item.
The records in the file are always in the same order,
namely: NAMFLD, MODFLD, STRFLD, TWNFLD,
CNTFLD, TELFLD, NDXFLD, NAMFLD, MODFLD, etc. If
the first record read out s valid data, it mustbelong
in the first element of the NAMFLDS array, so line
1440 transfers this data from TESTS to NAMFLDS(1).
The next two lines fill up the first elements in the
other five arrays. We now know that we have at
least one complete (database) record, so SIZE is set
to 2. This value must be one greater than the
number of valid records read into the arrays,
otherwise "ADDREC* would write new data into
elements already containing valid data.

Then a loop from 2 to 50 reads the records into
all six arrays, incrementing the index L each time
round. We have already made the decision to
restrict our program to dealing with files of 50
names and addresses, and the DIM statements in
the *CREARR* subroutine allocated space for this.
However, when you first start using the program,
you are unlikely to have a complete file of 50
entries, so we will need a routine in the program
that can detect when this is the case, set the variable
SIZE accordingly. and abort the reading-in loop.

Consequently, we have included line 1510 to
provide a call to a ‘SIZE’ subroutine, which we will
be developing later in the course. There are three
ways in which this problem could be handled.
First, when we write the data to tape, we could
arrange that the first record to be written is the
variable SIZE. The *RDINFL* subroutine could then
be modified to read in SIZE first and then set up a
loop of the form FOR L=1 TO SIZE to read in the
records. The second, and preferable, method

