
KEYBOARD

SCREEN _
--====.7_-_-

- -

-=
-

— - -

T E- —
‘40.°64t*

*** cts: ts"c#
DISK DRIVE

•
0

PRINTER

(1111111]

BIOS BOOS

i
,
,c) SOFTWARE/INTEGRATED SOFTWARE°.
-

COMPLETE CONTROL

Operating Under Orders
With the traditional operating
system the program currently
running has complete charge.
Its logic determines what
appears on the screen, when the
disk drive is to be accessed and
how to interrogate the keyboard.
Its general instructions are
passed to the operating system,
which manages the detailed
driving of the particular
hardware in use. The program's
execution is paramount, and the
operating system's
subordination is taken for
granted

In the last instalment of this series on
integrated software we looked at the most
common approach, that of producing all-in-
one programs covering all the functions that
you need. However, this is not the best
system, as such programs are huge and
wasteful of memory. Now we look at a more
versatile method.

STANDARD OPERATING SYSTEM

The alternative approach to integrated software is
based on a completely different principle. This
relies on the computer's operating system to
provide the basic facilities of integration, and
individual programs written to work with that
system will automatically fit and work together.

Creating such an operating system has been no
easy task, since it requires the computer's
hardware and software to be more sophisticated
than in traditional designs. Apple has led the field
with its custom-designed Lisa and Macintosh
computers, although several other companies,
notably Microsoft, are preparing systems to run on
other popular computers such as the IBM PC.

Programs for these new operating systems are
very different from programs for traditional
systems. A large part of most programs deals with
the user interface - the routines that receive
commands and information from the user and
present the results. Opinions differ on how
programs should be operated, so nearly every
package has its own unique operating procedures

and needs to be learnt from scratch.
An integrated operating system provides a

built-in set of user interface routines for every
application program to use. When the program
wants to display a list of options on the screen for
the user to choose from, there's a ready-made
routine to do it in the operating system. The
advantage of this, of course, is that all the
programs written to work with the operating
system will have roughly the same operating
procedures. Once you've learnt one program on
the system, you're well on the way to using all of the
others available!

One particular user interface provided for these
programs is the mouse. This is a pointing device
used to choose options from the screen via a
corresponding cursor. An alternative is the 'touch-
screen', in which a matrix of light beams responds
to the touch of a finger. The display is divided into
separate 'windows', each containing a different
option or task. Technically, such a user interface
demands a fast processor, lots of memory and very
high-resolution graphics. But it is worth these
extra costs because the system is generally
applicable to almost any program available, it is
very easy to learn and it provides the simplest
possible way for the user to be able to see and
switch between several applications at a time.

OPERATION CONTROL
It is important to appreciate the way this system
integrates programs. The program and user are
never in direct contact - everything has to be done
through the operating system and the operating
system is in control the whole time. In effect, each
application program becomes an extension of the
operating system, and the computer is a single
integrated 'environment'.

This brings us onto the second major difference
in the way such systems function. In a traditional
system, communication between program and
operating system is very much one-way. The
program asks for a specific task to be carried out
and the operating system subsequently does it.

In an integrated system, the operating system is
in control and make demands of the program. For
example, the operating system may send a
message to the program that says 'Could you
redraw your display because the user has just
moved it to the other side of the screen' or 'Hold
everything, the user has moved the mouse to a
different application' or 'Here's some data for you
taken from a spreadsheet.' In other words, the
program has to be able to respond to the requests
and demands of the operating system as well as the
other way round.

672 THE HOME COMPUTER ADVANCED COURSE

