
the PC to obtain the effective address. The
problem with this addressing mode is how to
calculate the offset correctly: this requires
calculating the difference between the address of
the data and the current value of the PC,
remembering that the PC is incremented as soon
as an instruction is loaded into the processor.
When the instruction is being executed, therefore,
the PC points to the following instruction.

This method is complicated by the wide
variation in the lengths of 6809 instructions —
from one to five bytes long. For example:

LDX OFFSET,Y

takes up one byte for the op-code, and one byte for
the post-byte, which is used for any indexed
instruction to specify the index register being used,
and whether or not indirection is to be taken into
account. The offset can take up zero, one or two
bytes depending on its size. Zero offsets and
offsets that can be expressed in five bits can be
incorporated in the post-byte (though some
assemblers cannot handle the choice very
accurately). Larger offsets require an extra byte
(if they can be expressed in eight bits) or an extra
two bytes. Special zero or five-bit offsets are not
allowed when the PC is used for indexing. The
instruction:

LDY OFFSET,X

would require yet another extra byte because the
op-code for LDY is two bytes long.

If you enjoy writing Assembly language
programs, and you are familiar with deciding what
data addresses to use and where to locate your
subroutines, then the associated tasks of looking
up (and sometimes working out) the op-codes,
converting addresses into two-byte format and
manually calculating jump offsets will soon
become second nature. A much simpler
alternative to doing this assembly by hand,
however, is to buy an assembler and let it do the
work for you, since it must calculate the length of
every instruction anyway. Most assemblers use the
special notation PCR (Program Counter Relative),
which makes the assembler use the PC as the index
register and calculate the offset. For example:

DATITM FCB 0

LDA DATITM,PCR

718 THE HOME COMPUTER ADVANCED COURSE

simple routine allows only for the substitution of
one control character by another, or a single
character following Escape by another single
character. But the routine clearly shows how such
an emulation is carried out. Two tables are kept:
one contains control characters; the other the
Escape characters. If a program issues a control
character, for example, then this character is used
as an offset into the table to pick up the actual
character that should be displayed.

Being fully relocatable, the routine can be
added on to any other program in any position.
We assume the existence of an operating system
routine (DUTCH), which sends the character in the
A accumulator to the screen, and we use JMP to
access this routine — which should be at a fixed
position in memory. Note that the ORG directive
must still be given, although it has no effect. The
character to be displayed should be in A.

INSTRUCTION LENGTHS
The problem of calculating the length of
instructions is not confined to using 'program
counter relative' addressing. It is often necessary to
know the total length of a routine to be fitted into a
restricted memory space — for example, in a
ROM. Any book on 6809 Assembly language, or
the manual of an assembler, should include a table
of mnemonics along with associated data. For
each mnemonic, this data would include a
corresponding op-code, the total length of the
instruction (though this may not be possible, in
which case the minimum length will be given
followed by a `+' sign), the number of clock cycles
that the instruction takes to perform, and the effect
of the instruction on the condition code flags.

The general rules for calculating the lengths of
instructions — and hence for writing compact
code — are:

1) Most op-codes are single byte; those directly
affecting the contents of S and Y (except for LEA)
and some affecting U (such as LDY and STS) are two
bytes long.

2) Any indexed addressing will necessitate the use
of a post-byte, and possibly a further one or two
bytes depending on the size of the offset.

3) Data following the op-code for immediate
mode will be one or two bytes long, depending on
the size of the register used.

4) Addresses should be one byte long if in the
direct page (usually locations zero to SFF), and two
bytes otherwise. Not all assemblers make proper
use of dirett addressing, so an address may turn
out to be two bytes when only one was expected.

The problem ot calculating the time taken by
each instruction is equally complicated, if for no
other reason than that the time depends on the
number of bytes that must be fetched, i.e. the
length of the instruction. This is important in real-
time applications and for driving some
peripherals. The time for each instruction is given
as the number of clock cycles — or, at least, the

TERMINAL EMULATION
We give a subroutine that uses this technique to
allow emulation of a variety of terminals, so that a
program written to use a particular type of
terminal can be run on your system: The
differences between terminals are most apparent
in the codes that are used to control the various
screen functions, such as clearing the screen and
positioning the cursor. These may be control
codes (characters whose ASCII code is less than
32) or escape sequences, which consist of the
Escape character (ASCII 27) followed by any
other character or sequence of characters. Our


