
In this second instalment of a series on
mathematics and BASIC programming, we
continue our look at trigonometrical
functions (begun on page 154). Here we
look at how the sine and cosine functions
can be used in BASIC programs, and also
provide ways of testing these two functions
to check for any possible sources of error.

Because BASIC is provided with both COS and SIN
functions, calculating the position of a point on a
line after rotating it through a certain number of
degrees should be an easy task. The COS of 0 will

give the position on the x-axis (the x co-ordinate)
and the SIN of 8 will give the position on the y-axis
(the y co-ordinate). However, when using these
two functions, it is important to remember that
most versions of BASIC work in radians and not
degrees. Another thing that should be checked is
that the values returned for 0 may not be reliable
as A approaches 0 or 1. The first thing we will do is
deal with the vital difference between degrees and
radians.

If a portion of a circle (called an arc) is drawn so
that its length is exactly equal to the radius of the
circle, the angle at the centre is defined as one
radian (see the illustration). If the radius of the
circle is one unit, this portion of the circumference
will also have a length of one unit. The formula
for finding the circumference of a circle is 2itr, so
there must be 2n radians in one complete
revolution. One complete revolution — the turn
needed to make a full circle — expressed in a more
familiar notation is 360 degrees. Therefore, 360'
is equal to 2it radians. This gives us an easy way of
relating degrees to radians:

360" = 27t radians
180' = it radians
90' = "/% radians

1. = ,ao = 0.0174 radians

A BASIC program that needed to find the cosine of
an angle measured in degrees would first have to
convert the angle measure from degrees into
radians, and then use the COS function. Try this:

10 INPUT "INPUT ANGLE IN DEGREES";A
20 LET B# = A * 0.0174

30 LET C# = COS(B#)
40 PRINT THE COSINE OF ;A;" DEGREES IS ";C#
50 END

The hash symbols indicate that the variables in the
program are double precision (which we'll look at
later in this article). A simple modification of this
program using the sine function, will input all

174 THE HOME COMPUTER ADVANCED COURSE

Radian Measure

- : PROGRAMMING PROJECT'S /TRIGONOMETRIC FUNCTIONS

DEGREES
OF PRECISION

values of 0 from (1 to 360° and produce the sine
of these values as a table. If these values are
plotted against the y-axis of a graph (where the x-
axis represents values of A in radians), the sine
wave graph familiar to hi-fi buffs and electrical
engineers will result (see the diagram on page
155). This familiar curve is nothing more than the
plot of positions of the intersection of the
hypotenuse with the unit circle on the y-axis for all
angles of rotation. In other words, it is an
alternative way of describing a circle
mathematically.

A few versions of BASIC allow the SIN and CCS
functions to work on either degrees or radians by
using a `software switch', but most do not. If you
prefer to work in degrees all the time, it is possible
to define a `user defined function' to make the
conversions for you. Here is one possibility:

10 REV A USER DEFINED FUNCTION FOR WCRKING
IN DEGREES

20 DEF FNDSIN (D#) = SIN(D#'0.017453293)
30 INPUT "INPUT ANGLE IN DEGREES";D#
40 PRINT THE SINE OF#";D#.' DEGREES IS":

FNDSIN(D#)
50 [NC

Line 20 defines a function called DSIN (standing
for `degrees/sine') that uses as its only parameter
the double precision variable D#. The right hand
half of the definition simply shows how the value
to be returned by the function (the sine of an
angle in degrees) is to be derived. To call a user
defined function, you simply use the name of the
function (with the value to be operated on in
parenthesis) as usual. Note, however, that the he
containing the definition must be executed before
any calls to the function can be made.

One of the problems of using the sine function
in BASIC is that not all BASICS handle it correctly as
the value of 0 approaches 0. It should be obvious
that, as 0 approaches zero, the value of SIN 9 will
also approach zero, since SIN 0 is zero when 0 is
zero. In other words, as the angle gets nearer and
nearer to zero, so the arc on the circumference
that defines 0 comes closer and closer to zero, and
the point at which the hypotenuse intersects the
circle gets closer and closer to 0 on the y-axis.
Unfortunately, the precision of BASIC is limited. In
other words, BASIC can only handle very large
values up to a certain value and very small values
down to a certain value. If 0 is very small (say
1.0E-36, i.e. 1 X 10 to the power of minus 36),
then BASIC may not be able to cope and will simply
return a value of 0 for the sine of such numbers.
Before using the sine function, try testing your
BASIC using the following small program:


