
Winning
4 Position

PQ$itipn evaluat io n' is
fundamental to aiy board
game program — even if the
game is as simple as noughts
and crosses. In this case, the
board is represented as a
three by three array, the
player's noughts by thevalue
one, and the computer's
crosses by a four Using these
values, any positon can be
evaluated by add ng upthe
totals for eve ry row, column
and diagonal. A fatal of 12 in
any cf these lines indicates

--r-^^ that the computer has won,
/4 three means that the player
^+ has won; a total of eight

shows that two crosses have
been played and :he computer
can vein; and soon. The
values one and four are used
because these ensure that
eve ry combination of noughts
and crosses gives a unique
total

r

4

t

'-. I

f

s

2 5

© Insights

program calculates who won, displaying the result
and an accumulating score for itself and its
opponent. If the RND function is truly random,
then the scores should even out over a large

number of rounds, no matter what strategy the
player adopts. Now we need to determine how we
can improve the computer's strategy to ensure that
it will win over a large number of rounds.

When we looked at random functions (see page
209), we learnt that generating a truly random
sequence of numbers is an impdssible task for both
humans and computers, though the latter make a
much better approximation. Over many rounds of
our game the human player will invariably favour
one of the objects more than the others. You can
write a subroutine in your program that keeps
track of the player's choices, using an array with
three elements called, let's say, CHOICE(1),
CHOICE(2), and CH010E;3). Each time the player
makes a choice, one is added to the total in the
corresponding array element. The computer can
then establish which object is more often presented
by its opponent, and play the object that beats this
preferred choice.

the game. So rather than keep a record of his
opponent's choices since the start of the game, it
would be better that the program simply recorded,
let's say, the last 20 choices. This will require a
CHOICE array of 20-b y-three elements, and a more
sophisticated subroutine to add up the three
columns and hence predict the best choice for the
computer's next turn.

However, the most serious shortcoming of this
algorithm becomes apparent if the player deduces
the computer's strategy. Then it is relatively easy
for him to play in a way that ensures that the
computer will lose on more than half the turns. The
player could, for example, consistently play the
same object, and then switch to another
unexpectedly, and so on. What we need is a
different algorithm that avoids these problems.
Nevertheless, it would be worthwhile developing
programs that use both the fully random and the
modified random methods, and observing the
scores when these are used by unsuspecting

players.
Because humans are incapable of making a

totally irrational or random decision, it follows that

Three problems arise with this method. Firstly, if
the computer consistently plays the same object
then the player is very quickly going to take
advantage of this. Therefore, the computer must
generally be made to choose from the three objects
using the RND function, while a routine should be
added to ensure that it will more frequently choose
the object that will beat the player's most preferred
choice.

The second problem is that the player will tend
to change his favourite object over the course of

362 THE HOME COMPUTER COURSE

every choice must be a function of the previous
choices. That function may be ext remely
complicated, and the player almost certainly isn't
aware of it, but if the computer can work out a
good approximation to that function, then it
should be able to win fairly consistently. Because
each player will have an individual subconscious
formula, and will probably change this formula
over the course of a long game, the program must
be made to interpret the formula while it is playing.
Programs that can learn like this are called

