
Internal Interface
The HD61 drives MIDI's ports,
directs incoming signals and
addresses the ROM and RAM

Two Way Process
The 6116 has an 8K bi-
directional buffer and digital
sequencing relay. It is also
responsible for interrupt
control'

CATION/MUSIC

JANOS MARFFY
Proper Form
The 2764 holds and applies
MID1protocol to incoming
and outgoing so

information

Input/Output Control
The HD6801 processor
handles the basic input/
output control functions

The Musical Instrument Digital
Interlace
The MIDI interface reconciles
the input/output protocols of
the computer and musical
instruments connected to it —
just like any other interface —
thus allowing the instruments to
use the computer's memory. It
also processes the digitised
sound passed through it,
adding control, sync and timing
information to the synthesiser
input

instruction is not given, and the rest of the melody,
E, G, etc, is entered without duration parameters,
all of the notes of the melody will continue to
sound. The result will be a sustained chord made
up of the notes of the melody.

Fortunately, even a slight acquaintance with the
stave notation on the VDU will be enough to
indicate that what was intended to be a melody
seems likely to become a chord. And an MCL user
who had made such an error could simply run the
sequence, but this time send a MONOPHONIC
instruction to the synthesiser. Monophony simply
means one sound as opposed to many
(polyphony). If the receiving synthesiser can
produce only one sound at a time when set to
MONOPHONIC, then the poorly-entered sequence
can be performed as a succession of single notes
only — a tune, rather than a chord.

Let us suppose that, after some trial and error,
the first-time user has entered his tune accurately,
and the interfaced synthesiser is now playing. The
melody keeps time, and the rhythm — defined by
the sequence of durations — is correct. It should be
noted that so far in our discussion the types of
instruction have been fairly limited. Only two
musical parameters or characteristics have been
called upon — pitch (middle C, E, G, etc.) and
duration.

The composer of the melody listens to it a few
times, then decides it sounds rather 'stiff' — as it is
likely to do while it has only a minimum of
definition. He decides that, instead of the first C
and E occurring one after the other, the pitch of
the C should glide upwards to the start of the E.
This sort of movement is called a glissandoor pitch
bend, and would be characteristic of the way a
person might whistle the tune. In this context, it
might add a touch of jauntiness to the synthesiser's
performance. So this instruction now replaces the
original instruction for middle C, adding an extra
byte.

This brings us to a simple point concerning

MIDI interfacing. If the receiving synthesiser has
no facility for producing glissandi (bending pitch),
it cannot carry out this last instruction. It may
perform the middle C as if it were receiving the
original instruction, or it may do something else
entirely. If a MIDI user's instructions are to
produce a section of polyphonic music, and the
receiving synthesiser is only a monophonic
instrument, it will probably make an
unpredictable selection from the polyphony, and
then perform monophonically. In short, using
MIDI to link a microcomputer to a very basic
synthesiser will not turn it into an expensive
synthesiser like the Fairlight.

These restrictions also apply in reverse. The
receiving instrument may be a superb £10,000
synthesiser, but unless sufficient musical
parameters have been defined, and unless the
synthesiser's own controls have been set up as
desired, the result may well be performed with the
musicality of a pocket calculator.

In practice, the second of these two situations is
easily improved. As many parameters as possible
should be set as constants using the synthesiser
controls, and the MIDI instructions should work
within those parameters. This approach is the one
most likely to be adopted by the synthesiser player
whose problems we considered earlier.

So far, we have looked at pitch and duration
characteristics, but MIDI provides for 128
theoretical controls, covering filtering, distortion,
'white noise' (all possible frequencies) and 'pink
noise' (mid-range frequencies), each with values
ranging from 0 to 128. This is more than adequate
to deal with the parameters available on most
synthesisers, and it is these controls that will
probably interest microcomputer owners.

This is where the MIDI transmission rate
becomes an issue. We have seen that a very
straightforward command, concerning a single
note and defining only two parameters, used three
serial words. With the 31.25 Kbaud rate, this takes
almost one millisecond. Six-note chords are
common in many types of music: such a chord
would take 5.76 milliseconds to transmit. If we
now started to define this chord further using
MIDI controls, the transmission time becomes
slow enough for the human ear to begin to detect
changes in the sound's characteristics caused by
delay. These changes are apparent only when
sounds, especially similar sounds, occur together
— but as an audio interface MIDI was designed to
handle simultaneous sounds. Music,
unfortunately, is a 'parallel' medium: as listeners,
we are used to hearing things happen
simultaneously.

It is therefore not surprising that MIDI's serial
transmission has been criticised; parallel
transmission would have done the job better. It
remains to be seen whether MIDI users are
troubled by this failing. At present, the design of
the interface appears to be a compromise between
cost and efficiency, so it is worth remembering that
the present specification may only be the first.

536 THE HOME COMPUTER ADVANCED COURSE


