easier to enter them using a READ statement
together with a DATA statement, like this:

10 DIM A(5)
20FORX=1T05

30 READ A(X)

40NEXT X

50 DATA 5, 10, 15, 20, 100

Try this short program, and then test the contents
of the array using the PRINT command (that is, use
PRINT after the program has been RUN. For
example, PRINT A(1)¢«CR> and PRINT A(5). Now we
can add a few lines to the program to print the
elements in the array for us automatically:

60FORL=1T05
70 PRINT A(L)

80 NEXT L

90 END

RUN this program and check that the correct
values are printed on the screen. Then retype line
50 using five different DATAitems. Remember that
the numbers in a DATA statement must be
separated from each other using commas, but
there must be no comma before the first number
or after the last one.

The simplest way to assign values is to use READ
and DATA statements. If the values will be different
every time the program is run, using the INPUT
statement inside a FOR-NEXT loop is probably the
best way. If the total number of elements in the
array is fixed, the number can be used as the
upper limit in the FOR statement.

Let’s use all we have learnt so far to build a
short but powerful program. Suppose we wanted
to sort some numbers into ascending order.
Before setting out to write the program, the first
thing to do is to figure out how to solve the
problem in a logical way. When the way to solve
the problem seems clear, write down the steps one
after the other using clear, short English
sentences,

Suppose we start with five numbers: 4, 9, 2, 8,
3. Sorting these into ascending order is a trivial
problem. We just scan along the line and notice
which is the smallest, and put it on the left, and
then repeat the process for the remaining digits.

The computer, however, needs a very precise
set of instructions, so we shall have to think very
clearly about what steps are required. Here's one
approach: Compare the first digit with the second
digit. If the first digit is bigger than the second one,
swap them. If the first digit is smaller than the
second one, leave their positions unchanged.

Compare the second digit with the third digit. If
the second digit is smaller than the third one, leave
their position unchanged.

Repeat the process of comparing pairs of digits
until the last pair of digits has been compared.

If there were no swaps, 2l the numbers must be
in order. If there were any swaps, go back to the
beginning and repeat the process.

If you think about this process, you will see that
it will indeed sort any group of numbers into

Basic Programming

ascending numeric order. Look at what would
happen to our original set of numbers as each pair
of digits is compared:

4 9 2 8 3

o
[p= A p %]
o oo o
L W oo
[{= T % %1

All the pairs have now been compared and
swapped where necessary. Since at least one swap
took place, go back to the beginning and repeat
the process:

4 2 3
3
8

W ww w

8
8
3
3

P> MO M2
& B

8

There were still swaps, so go back to the beginning
and repeat:

2 43 89
2 3 48 9
2 3 489

There were no swaps, last time through, so every
number must be smaller than the number to its
right. The numbers must be in ascending order
and the operation can be terminated.

Using subscripted variables allows a sort
routine like this to be implemented easily in Basic,
because the subscript itself can be a variable. If
our original five numbers were the values in an
array; so that A(1) =4, A(2) =9, A(3) =2, A(4) =8 and

Subscripted
Variables

Subscripted variables
(variables with several
‘compartments’ in the box]
increase the power of BASIC
enormously. Here, variable A
has the subscript X <Y - Z,
Each of these is & variable,
and the value of each is
shown inside the small
boxes. X has the value 5, Y is
6andZis7.X+Y-1is
therefore equivalentto 5 +6 -
7, which is 4. A(4) is the
fourth element in the array. Its
value is 20. PRINT A(X + Y =
Z)will therefore result in 20
being printed on the screen

THE HOME COMPUTER COURSE 117

TONY LODGE



