
Opcodes
Here are some more opcodes
that a typical microprocessor
would feature

JSR
Jump SubRoutine
This function is equivalent to
BASIC's GOSUB. JSR S354D
will change the contents of the
program cointer iPG) register
so that it executes the code
from 3354D onwards

ReTum'from Subroutine

On encountering RTS. the
processor will jump bac< to the
location from which the
subroutine was called (i e.
equivalent to RETURN in
BASIC). RTS has no operand
because the return address will
have automatically been stored
in a special area of memory
called the Stack

Branch if MInus

This is one of several forms of
conditional branching it
machine coie (in BASIC,
IF. ..THENGOTOisa
conditional branch). If the
result of the last operation
resulted in a negative value in
the accumulator, program
execution will jump to a
speci`ied address BPL
speci`ies Branch if PLus

LDX
L.oaD X register

Xis aiother single byte
register within the processor.
and while itcannct perform
arithnetic in the same way as
the accumulator, his used for
'indexed adf ressilg' (see
panel). LDX loads a value into
X, and STX (STore X) will store
it bac< in memory

INX
INcrement X
By adling 1 to the value of X
(DEX — DEcremeit X — will
subtract 1), and using irdexec
addressing, it is passible to
step through a number of
locations in memory,
performing the same process
on each

Passwords To Computing

Longhand/
Shorthand
A machine cede program can take on several different forms. It is
usually written by the programmer in the form of Assembly
language, which uses mnemonics for opcodes and labels for
operands, thus:

LDA WEIGHT
AUC FUEL
STA WEIGHT

We must however specify the addresses of those labels. For
example:

S03EE
!GH S031 F

An assembler package would transform this into a hex dump.
using a disk drive. Pseuco assembly language', as shown below.
is less easy to read, but can often be entered into a package called
a'spot assembler', which doesn't need disks.

LOA S031F
ADC S03EE
STA S031F

A hex dump consis's of a starting address (at the left) and the
sequence of two-digit hex values as they will appear in memory.
Note that an operand like $031 F is stcred in revere order (1 F 03)
aid that opcodes have been replaced by the appropriate hex value:

19CZADIF0360EEO8DiF03

obliterated by BASIC statements such as IQ EW.
Most home computers have some BASIC

command to tell the machine to stop executing
BASIC and begin executing the machine code
program that starts at a specific location. One
form of this command is SYS 4096 (RETURN),
meaning `transfer control to the system starting at
decimal location 4096'; another is CALL SE651,
meaning `call the machine code routine starting at
hex location E651'.

The machine code subroutine or program will
then execute this system or routine (it may or may
not produce any visible results, depending on the
nature of the program). If it is correctly written
and incorporates the proper terminating
procedure, control will be passed back to BASIC.

This means, incidentally, that it is possible to call
machine code subroutines from several places in
the operation of a BASIC program, whenever a
function needs to be performed at high speed.

One of the difficulties of programming in
machine code is that if you have made a mistake
in your code, the computer won't come back with
a nice helpful SYNTAX ERROR. It will more than
likely `crash' instead: the machine won't respond
to anything you type. This isn't harmful to the
computer, but you will have to reset it (or switch
the machine off and then on again), and that
usually means having to enter the program again
from scratch. That's why you can't experiment in
machine code as you can in BASIC — the operation
of the program must be thoroughly checked on
paper before it is entered into the computer.

However, a software device that can assist
greatly in the entering and checking of machine
code is the `machine code monitor' (which has
nothing to do with a monitor screen). This is built

into the ROMs of at few computers but is
generally purchased as a cassette or cartridge-
based package. A machine code monitor is a
simple operating system that will display on the
screen the contents of any requested section of
memory. These (hex) values can simply be altered
or written over, so a monitor is by far the fastest
way of entering a hex dump. Moreover, it usually
allows you to load and save machine code
programs directly onto cassette, without the need
for the BASIC loader program. The most advanced
machine code utility programs (the machine code
equivalent to BASIC tool kits — see page 444) show
the contents of each of the processor's internal
registers.

Hex dumps are a convenient way of expressing
machine code, but they aren't easy to read. Unless
you happen to remember the hexadecimal
equivalent of all the various opcodes, it's almost
impossible to distinguish the opcodes from the
operands. So programs are usually written using
the three-letter mnemonics that we introduced in
the previous article (page 449), and these are then
translated into hex using a table of codes from the
microprocessor's handbook.

However, a more sophisticated form of
machine code monitor will allow you to type in
the program in mnemonics, performing the
conversions automatically, This is called a `spot
assembler' because it will assemble the
mnemonics into numbers on the spot.

This leads us on to the final form in which
machine code can be expressed — Assembly
language — which not only makes use of
mnemonics for the opcodes but can handle names
(or labels) instead of hex numbers for the
operands. Thus, if location S07B2 contains the
current number of missiles fired in a game, we can
load this into the accumulator with the
instruction:

LDA MISSIL

At the start of the program we will have to specify
the location of MISSIL=S07B2, and that this
location should initially contain the value of $09
(nine missiles).

When we have finished developing this
program in Assembly language (called the `source
code' of the program), we run a utility program
called an assembler. This works through the code,
replacing mnemonics and any labels with their
hex equivalent, thereby creating a new version
called the `object code'. This code can then be
entered into the computer's memory and run. The
process is not dissimilar to compiling (see page
84), though in this case there is a one-to-one
correspondence between the source and object
code.

Assembly language, being a higher-level
language than machine code, is considerably
easier to write, but there is no loss in performance.
However, assembler packages will usually only
work with a disk drive, and so are not available to
all home computer users.

THE HOME COMPUTER COURSE 465

