7 UTILITY ROUTINES

There are a number of useful routines within the QL ROM that would be of
great benefit to application programmers. For example, how about a
routine to compare two strings, or even better, a complete floating
point arithmetic package? All such routines are available to you!

SIMPLIFIED TRAP ROUTINES

It 1is possible to class a number of the utility routines (seven tc be
precise) as being simplified TRAP routines. They offer a reduced
overhead in accessing common I/O procedures, but they must be called in
user mode.

SUPERBASIC UTILITY ROUTINES

The second group of utility routines described in this chapter are the
SuperBASIC utility routines. They may be called from any code (i.e.,
code running in user or supervisor mode). An enforcement on routine
accesses 1is that all addresses passed to a routine must be relative to
register A6. If this rule is not obeyed, for every address passed over,
there is no telling what the routine may actually do!

As a general rule, to make life easy for yourself, you may set
register A6 to zero at the start of your program (e.g., by using SUB.L
A6,A6), if your program resides in the transient program area, In this
way you can forget about A6 and just concentrate on making the code
program counter relative (i.e., position independent). Alternatively you
can assemble your code starting at address zero. In this way your
pesition independent code will always end up with addresses relative to
a zero base address. TPA jobs are executed with A6 pointing to the base
of the code and, therefore, the addresses 1in your code will
automatically be relative to A6.

It is advisable to allocate at least 64 bytes of stack space before
using any of these utilities. In the case of the arithmetic package, 96
bytes would be more appropriate, Note that these are minimal
requirements,

149

7.1 Use of 68000 registers

Each utility routine is accessed through its own vector (see Chapter 3)
and therefore there is no need to pass over a code indicating which
operation is to be performed.

If an error status is returned by a routine it will be as a long-word
in register DO, In such cases, if the code returned is not zero then an
error has occurred. Small negative error codes are used to indicate
standard errors. These error codes are listed in Appendix C. If the trap
call invoked some form of additional device driver, the error code
returned can be a pointer to a specific error message. In order that the
two types of error return code might never be confused, the pointer type
error code is in fact a pointer to an address $8000 below that of the
true error message, The full descriptions of the routines which return
this kind of error status list which additional errors can be returned.
It would of course be wise to check for any errors after a routine has
been called. :

It is important to realize that not all the routines return an error
status., Also, some routines will use register DO to return a result to
the calling program (not an error!),. It is the programmers
responsibility to know whether or not an error status will be returned,
and, if not, whether register DO will be used for some other purpose.

In addition to the use of registers DO and A6, data registers D1 to D3
and address registers A0 to A3 are variably used to pass values to and
from the routines, A few routines will also use D7 or A4, When the
appropriate registers have been set for any one call the appropriate
routine is accessed via its well-defined vector (see Chapter 3). In
cases where the data size qualifier (i.e., '.B', '.W', or '.L') is not
specified within the description, the default is long-word (i.e., '.L').

150

UT.WINDW Vector $C4 (196)

Set window using name

Entry parameters: AO Pointer to name
Al Pointer to parameter block
Return parameters: AO Channel ID

Affected registers: D1 - D3, AQ -~ A3

Additional errors: OM (-3) out of memory
OR (-4) range error
NO (-6) channel not available
BN (-12) bad device name

Description

This routine will set up a window defined by the specified name, and
with the attributes given 1in the parameter block, The name should
conform to the standard format for a screen device name (see Sec.5.2).
The parameter block consists of four bytes as follows:

Byte Use

0 Border colour
1 Border width
2 Paper colour
3 Ink colour

The strip colour for the window will be set to the same colour as the
paper.
Note that the supplied name should be in the form of a standard string,

The string definition will consist of a data word, defining the length
of the string, followed by the string itself,

151

UT.CON Vector $C6 (198)

Set up console window

Entry parameters: Al Pointer to parameter block
Return parameters: AO Channel ID

Affected registers: D1 - D3, AO - A3

Additional errors: OM (-3) out of memory

OR (-4) range error
NO (-6) channel not available

Description

This routine will set up a console window defined by the attributes
given in the parameter block. The block consists of four bytes, and four
words, as follows:

Offset Use

00 Border colour (byte)
01 Border width

02 Paper colour

03 Ink colour

04 Width of window (word)
06 Height of window

08 X origin

0A Y origin

The strip colour for the window will be set to the same colour as the
paper. The default keyboard buffer length of 128 bytes will be used.

152

UT.SCR Vector $C8 (200)

Set up screen window

Entry parameters:
Return parameters:
Affected registers:

Additional errors:

Description

Pointer to parameter block
Channel ID

A0 - A3

out of memory

range error
channel not available

This routine will set up a screen window defined by the attributes given

in the parameter block. The block consists of four bytes, and four
words, as follows:
Offset Use
00 Border colour (byte)
01 Border width
02 Paper colour
03 Ink colour
04 Width of window (word)
06 Height of window
08 X origin
0A Y origin

The strip colour for the window will be set to the same

paper.

colour

as

the

153

UT.ERRO Vector $CA (202)

Write error message to channel 0

Entry parameters: DO.L Error code
Return parameters: none

Affected registers: none

Additional errors: none

Description

This routine will write the error message, defined by DO on entry. S to
channel zero, If the error code is in fact an address to a specific
error message (see Sec.7.1), the message must be in the form of a
standard string and it must be terminated by an ASCIT <LF> ($0A). The
string definition will consist of a data word, defining the length of
the string, followed by the string itself, The defined length of the
string will include the <LF>.

154

UT.ERR Vector $CC (204)

Write error message to channel n

Entry parameters: DO.L Error code
AO Channel ID
Return parameters: none
Affected registers: none
Additional errors: NC (-1) not complete

NO (-6) channel not open

Description

This routine will write the error message, defined by DO on entey,te
the specified channel. If the error code is in fact an address to a
specific error message (see Sec.7.1), the message must be in the form of
a standard string and it must be terminated by an ASCII <LF> ($0A). The
string definition will consist of a data word, defining the length of
the string, followed by the string itself. The defined 1length of the
string will include the <LF>,

155

UT.MINT Vector $CE (206)

Convert integer to ASCII and write it to channel n.

Entry parameters: D1.W Integer value
AO Channel ID
Return parameters: none

Affected registers: D1 - D3, Al - A3

Additional errors: NC (-1) not complete
NO (-6) channel not open

Description
This routine will convert the integer, specified by register D1, into an

ASCII string. It will then add an ASCII space to the end of the string
and send the whole string to the specified channel,

156

UT.MTEXT Vector $DO0 (208)

Send message to channel n

Entry parameters: AO Channel ID
Al Base of message
Return parameters: none

Affected registers: D1 - D3, Al - A3

Additional errors: NC (-1) not complete
NO (-6) channel not open

Description

This routine will send the specified message to the specified channel.
The message must be in the standard format for a string. The string
definition will consist of a data word, defining the length of the
string, followed by the string itself. The defined length of the string
will include any ASCII <LF> terminator, which may be present if desired.

157

UT.CSTR Vector $E6 (230)

Compare two strings

Entry parameters: DO.B
AQ
Al
Return parameters: DO L.
Affected registers: none
Additional errors: none
Description

Comparison type
Base of string 0
Base of string 1

Result

This is a SuperBASIC utility. All addresses must be relative to A6.

The comparison type, specified by register DO on entry, defines the mode
of operation of the comparison operation. Valid types are:

Type Comparison

0 Simple, character by character

1 As type 0, case of characters ignored

2 As type 0, value of embedded numbers is significant
3 As type 1, value of embedded numbers is significant

The result returned in register DO will be one of three values:

Result Reason

-1 String O is less than string 1
0 String O and string 1 are the same
+1 String 1 is less than string 0

The string definitions will consist of a data word, defining the length
of the string, followed by the string itself.

158

-

CN.DATE Vector $EC (236)

Get date and time

Entry parameters: DI.L Date (internal value)
Al Pointer to stack area

Return parameters: Al Updated stack pointer

Affected registers: Al

Additional errors: none

Description

This is a SuperBASIC utility. All addresses must be relative to A6.

This routine will return the data and time as a 20-byte string in
standard string format. The date string will have the form:

yyyy mmm dd hh:mm:ss

On entry to the routine, register Al must point to the top of a stack
area. At least 22 bytes must be available at the top of this stack for
the routine to store the string, and its length. On returning to the
calling program, the pointer will be pointing to the new top of the
stack area (which will be holding the length of the string).

159

CN.DAY Vector $EE (238)

Get day of week

Entry parameters: D1.L Date (internal value)
Al Pointer to stack area
Return parameters: Al Updated stack pointer

Affected registers: Al

Additional errors: none

Description
This is a SuperBASIC utility. All addresses must be relative to A6,

This routine will return the day of the week as a 3-byte string in
standard string format. On entry to the routine, register Al must point
to the top of a stack area. At least six bytes must be available at the
top of this stack for the routine to store the string, and its length,
On returning to the calling program, the pointer will be pointing to the
new top of the stack area (which will be holding the 1length of the
string).

160

-

CN.FTOD Vector $F0 (240)

Convert floating point to ASCIT

Entry parameters: AO Pointer to buffer
Al Pointer to stack
Return parameters: AO Updated buffer pointer
Al Updated stack pointer

Affected registers: D1 - D3, 40 - A3

Additional errors: none

Description
This is a SuperBASIC utility. All addresses must be relative to A6,

This routine will convert a floating point number into a string of ASCII
characters. The string will not be in standard format and, therefore,
will not be preceded by a word of data giving the byte count.

On entry, the floating point number must be on the top of a stack area
pointed to by Al, and register A0 must point to a buffer area. On
return, the string will be stored in the buffer., The buffer must be at
least 14 bytes long. Both the stack pointer and the buffer pointer will
be wupdated. The stack pointer will be incremented by 6, and the buffer
pointer will point to the byte following the last character stored,

161

CN.ITOD Vector $F2 (242)

Convert integer to ASCII

Entry parameters: AO Pointer to buffer
Al Pointer to stack
Return parameters: AO Updated buffer pointer
Al Updated stack pointer

Affected registers: D1 - D3, A0 - A3

Additional errors: none

Description
This is a SuperBASIC utility. All addresses must be relative to A6,

This routine will convert an integer number into a string of ASCIT
characters. The string will not be in standard format and, therefore,
will not be preceded by a word of data giving the byte count,

On entry, the integer must be on the top of a stack area pointed to by
Al, and register AQ must point to a buffer area, On return, the string
will be stored in the buffer, The buffer must be at least six bytes
long. Both the stack pointer and the buffer pointer will be updated. The
stack pointer will be incremented by 2, and the buffer pointer will
point to the byte following the last character stored.

162

CN.ITOBB Vector $F4 (244)

Convert byte (binary) to ASCIL

Entry parameters: AO Pointer to buffer
Al Pointer to stack
Return parameters: AO Updated buffer pointer
Al Updated stack pointer

Affected registers: D1 - D3, AO - A3

Additional errors: none

Description
This is a SuperBASIC utility., All addresses must be relative to A6,

This routine will convert a binary number, of size byte, into a string
of ASCII characters. The string will not be in standard format and,
therefore, will not be preceded by a word of data giving the byte count.

On entry, the byte must be on the top of a stack area pointed to by
Al, and register AO must point to a buffer area. On return, the string
will be stored in the buffer. The buffer must be at 1least eight bytes
long. Both the stack pointer and the buffer pointer will be updated. The
stack pointer will be incremented by 1, and the buffer pointer will
point to the byte following the last character stored.

163

CN.ITOBW Vector $F6 (246)

Convert word (binary) to ASCII

Entry parameters: AO Pointer to buffer
Al Pointer to stack
Return parameters: AOQ Updated buffer pointer
Al Updated stack pointer

Affected registers: D1 - D3, AO - A3

Additional errors: none

Description
This is a SuperBASIC utility. All addresses must be relative to A6,

This routine will convert a binary number, of size word, into a string
of ASCII characters. The string will not be 1in standard format and,
therefore, will not be preceded by a word of data giving the byte count.
On entry, the word of data must be on the top of a stack area pointed
to by Al, and register AO must point to a buffer area, On return, the
string will be stored in the buffer. The buffer must be at 1least 16
bytes long. Both the stack pointer and the buffer pointer will be
updated. The stack pointer will be incremented by 2, and the buffer
pointer will point to the byte following the last character stored.

164

CN.ITOBL Vector $F8 (248)

Convert long-word (binary) to ASCII

Entry parameters: AO Pointer to buffer
Al Pointer to stack
Return parameters: AO Updated buffer pointer
Al Updated stack pointer

Affected registers: D1 - D3, AO - A3

Additional errors: none

Description
This is a SuperBASIC utility. All addresses must be relative to A6.

This routine will convert a binary number, of size long-word, into a
string of ASCII characters. The string will not be in standard format
and, therefore, will not be preceded by a word of data giving the byte
count.

On entry, the long-word must be on the top of a stack area pointed to
by Al, and register AO must point to a buffer area. On return, the
string will be stored in the buffer. The buffer must be at least 32
bytes long. Both the stack pointer and the buffer pointer will be
updated. The stack pointer will be incremented by 4, and the buffer
pointer will point to the byte following the last character stored.

165

CN.ITOHB Vector $FA (250)

Convert byte to hexadecimal ASCIT

Entry parameters: AO Pointer to buffer
Al Pointer to stack
Return parameters: AO Updated buffer pointer
Al Updated stack pointer

Affected registers: D1 - D3, A0 - A3

Additional errors: none

Description
This is a SuperBASIC utility. All addresses must be relative to A6.

This routine will convert a single byte into a string of ASCII
characters. The string will not be in standard format and, therefore,
will not be preceded by a word of data giving the byte count.

On entry, the byte must be on the top of a stack area pointed to by
Al, and register AO must point to a buffer area. On return, the string
will be stored in the buffer. The buffer must be at least two bytes
long. Both the stack pointer and the buffer pointer will be updated. The
stack pointer will be incremented by 1, and the buffer pointer will
point to the byte following the last character stored.

166

CN.ITOHW Vector $FC (252)

Convert word to hexadecimal ASCII

Entry parameters: AO Pointer to buffer
Al Pointer to stack
Return parameters: AO Updated buffer pointer
Al Updated stack pointer

Affected registers: Dl .~ D3, A0:— A3

Additional errors: none

Description
This is a SuperBASIC utility. All addresses must be relative to A6,

This routine will convert a word of data into a string of ASCII
characters. The string will not be in standard format and, therefore,
will not be preceded by a word of data giving the byte count,

On entry, the data word must be on the top of a stack area pointed to
by Al, and register AO must point to a buffer area, On return, the
string will be stored in the buffer. The buffer must be at least four
bytes 1long. Both the stack pointer and the buffer pointer will be
updated. The stack pointer will be incremented by 2, and the buffer
pointer will point to the byte following the last character stored,

167

CN.ITOHL Vector $FE (254)

Convert long-word to hexadecimal ASCII

Entry parameters: AO Pointer to buffer
Al Pointer to stack
Return parameters: AO Updated buffer pointer
Al Updated stack pointer

Affected registers: D1 - D3, A0 - A3

Additional errors: none

Description
This is a SuperBASIC utility. All addresses must be relative to Ab,

This routine will convert a long-word of data into a string of ASCII
characters. The string will not be in standard format and, therefore,
will not be preceded by a word of data giving the byte count,

On entry, the long-word must be on the top of a stack area pointed to
by Al, and register AO must point to a buffer area. On return, the
string will be stored in the buffer, The buffer must be at least eight
bytes long. Both the stack pointer and the buffer pointer will be
updated. The stack pointer will be incremented by 4, and the buffer
pointer will point to the byte following the last character stored.

168

CN.DTOF Vector $100 (256)

Convert ASCII to floating point

Entry parameters: D7 Pointer to end of buffer
AO Pointer to buffer
Al Pointer to stack

Return parameters: AO Updated buffer pointer
Al Updated stack pointer

Affected registers: D1 - D3, AO - A3

Additional errors: XP (-17) expression error

Description
This is a SuperBASIC utility. All addresses must be relative to A6.

This routine will convert a string of ASCII characters into a floating
point number. The string should not be in standard format and,
therefore, will not be preceded by a word of data giving the byte count.
Conversion will stop either when AQ equals D7, or when a non-permissible
character is found in the ASCII string.

On entry, register Al must point to the top of a stack area, and
register A0 must point to the buffer area containing the string. The
stack must have at least six bytes free, Register D7 may either point to
the end of the buffer, or be zero. On return, the floating point number
will be loaded onto the top of the stack. Both the stack pointer and the
buffer pointer will be updated if no error occurs. The stack pointer
will be decremented by 6, and the buffer pointer will point to the byte
following the last valid character scanned.

169

CN.DTOI Vector $102 (258)

Convert ASCII to integer

Entry parameters: D7 Pointer to end of buffer
AO Pointer to buffer
Al Pointer to stack

Return parameters: AO Updated buffer pointer
Al Updated stack pointer

Affected registers: Dl -~ D3, A0 - A3

Additional errors: XP (-17) expression error

Description
This is a SuperBASIC utility, All addresses must be relative to A6,

This routine will convert a string of ASCII characters into an integer.
The string should not be in standard format and, therefore, will not be
preceded by a word of data giving the byte count. Conversion will stop
either when AO equals D7, or when a non-permissible character 1is found
in the ASCII string.

On entry, register Al must point to the top of a stack area, and
register A0 must point to the buffer area containing the string. The
stack must have at least four bytes free. Register D7 may either point
to the end of the buffer, or be zero. On return, the integer will be
loaded onto the top of the stack. Both the stack pointer and the buffer
pointer will be updated if no error occurs. The stack pointer will be
decremented by 2, and the buffer pointer will point to the byte
following the last valid character scanned.

170

CN.BTOIB Vector $104 (260)

Convert ASCII to byte

Entry parameters: D7 Pointer to end of buffer
AOQ Pointer to buffer
Al Pointer to stack

Return parameters: AO Updated buffer pointer
Al Updated stack pointer

Affected registers: D1 - D3, AO - A3

Additional errors: XP (-17) expression error

Description
This is a SuperBASIC utility, All addresses must be relative to Ab,

This routine will convert a string of ASCII ones and zeros into a byte
of data. The string should not be in standard format and, therefore,
will not be preceded by a word of data giving the byte count. Conversion
will stop either when AO equals D7, or when a non-permissible character
is found in the ASCII string.

On entry, register Al must point to the top of a stack area (at an
even address boundary), and register AQ must point to the buffer area
containing the string. The stack must have at least four bytes free.
Register D7 may either point to the end of the buffer, or be zero. On
return, the byte (as the least significant byte of a word) will be
loaded onto the top of the stack. Both the stack pointer and the buffer
pointer will be updated if no error occurs. The stack pointer will be
decremented by 1, and the buffer pointer will point to the byte
following the last valid character scanned.

This routine will not work on QDOS versions 1.03 and earlier,

171

CN.BTOIW Vector $106 (262)

Convert ASCII to word

Entry parameters: D7 Pointer to end of buffer
AO Pointer to buffer
Al Pointer to stack

Return parameters: AO Updated buffer pointer
Al Updated stack pointer

Affected registers: D1 - D3, AO - A3

Additional errors: XP (-17) expression error

Description
This is a SuperBASIC utility. All addresses must be relative to A6,

This routine will convert a string of ASCII ones and zeros into a word
of data. The string should not be in standard format and, therefore,
will not be preceded by a word of data giving the byte count. Conversion
will stop either when AO equals D7, or when a non-permissible character
is found in the ASCII string.

On entry, register Al must point to the top of a stack area, and
register AO must point to the buffer area containing the string, The
stack must have at least four bytes free. Register D7 may either point
to the end of the buffer, or be zero. On return, the word of data will
be loaded onto the top of the stack. Both the stack pointer and the
buffer pointer will be updated if no error occurs., The stack pointer
will be decremented by 2, and the buffer pointer will point to the byte
following the last valid character scanned.

This routine will not work on QDOS versions 1.03 and earlier,

172

CN.BTOIL Vector $108 (264)

Convert ASCII to long-word

Entry parameters: D7 Pointer to end of buffer
AO Pointer to buffer
Al Pointer to stack

Return parameters: AO Updated buffer pointer
Al Updated stack pointer

Affected registers: D1 - D3, A0 - A3

Additional errors: XP (-17) expression error

Description
This is a SuperBASIC utility. All addresses must be relative to A6.

This routine will convert a string of ASCII ones and zeros into a
long-word of data. The string should not be 1in standard format and,
therefore, will not be preceded by a word of data giving the byte count,
Conversion will stop either when AO equals D7, or when a non-permissible
character is found in the ASCII string.,

On entry, register Al must point to the top of a stack area, and
register AO must point to the buffer area containing the string. The
stack must have at least four bytes free. Register D7 may either point
to the end of the buffer, or be zero. On return, the long-word will be
loaded onto the top of the stack, Both the stack pointer and the buffer
pointer will be updated if no error occurs. The stack pointer will be
decremented by 4, and the buffer pointer will point to the byte
following the last valid character scanned.

This routine will not work on QDOS versions 1.03 and earlier.

173

CN.HTOIB Vector $10A (266)

Convert hexadecimal ASCIT to byte

Entry parameters: D7 Pointer to end of buffer
AO Pointer to buffer
Al Pointer to stack

Return parameters: AO Updated buffer pointer
Al Updated stack pointer

Affected registers: D1 - D3, A0 - A3

Additional errors: XP (-17) expression error

Description
This is a SuperBASIC utility. All addresses must be relative to Ab.

This routine will convert a string of ASCIT characters into a byte of
data. The string should not be in standard format and, therefore, will
not be preceded by a word of data giving the byte count, Conversion will
stop either when A0 equals D7, or when a non-permissible character is
found in the hexadecimal ASCII string.

On entry, register Al must point to the top of a stack area (at an
even address boundary), and register AQ must point to the buffer area
containing the string. The stack must have at least four bytes free,
Register D7 may either point to the end of the buffer, or be zero. On
return, the byte (as the least significant byte of a word) will be

loaded onto the top of the stack. Both the stack pointer and the buffer.

pointer will be updated if no error occurs. The stack pointer will be
decremented by 1, and the buffer pointer will point to the byte
following the last valid character scanned.

This routine will not work on QDOS versions 1.03 and earlier.

174

CN.HTOIW Vector $10C (268)

Convert hexadecimal ASCII to word

Entry parameters: D7 Pointer to end of buffer
AO Pointer to buffer
Al Pointer to stack

Return parameters: AO Updated buffer pointer
Al Updated stack pointer

Affected registers: D1 - D3, AO - A3

Additional errors: XP (-17) expression error

Description
This is a SuperBASIC utility. All addresses must be relative to A6.

This routine will convert a string of ASCII characters into a word of
data. The string should not be in standard format and, therefore, will
not be preceded by a word of data giving the byte count. Conversion will
stop either when AO equals D7, or when a non-permissible character is
found in the hexadecimal ASCII string.

On entry, register Al must point to the top of a stack area, and
register A0 must point to the buffer area containing the string. The
stack must have at least four bytes free. Register D7 may either point
to the end of the buffer, or be zero. On return, the word of data will
be loaded onto the top of the stack. Both the stack pointer and the
buffer pointer will be updated if no error occurs. The stack pointer
will be decremented by 2, and the buffer pointer will point to the byte
following the last valid character scanned.

This routine will not work on QDOS versions 1.03 and earlier.

175

CN.HTOIL Vector $10E (270)

Convert hexadecimal ASCII to long-word

Entry parameters: D7 Pointer to end of buffer
AO Pointer to buffer
Al Pointer to stack

Return parameters: AO Updated buffer pointer
Al Updated stack pointer

Affected registers: D1 - D3, A0 - A3

Additional errors: XP (-17) expression error

Description
This is a SuperBASIC utility. All addresses must be relative t> A6,

This routine will convert a string of ASCII characters into a long-word
of data. The string should not be in standard format and, therefore,
will not be preceded by a word of data giving the byte count. Conversion
will stop either when AO equals D7, or when a non-permissible character
is found in the hexadecimal ASCIT string.

On entry, register Al must point to the top of a stack area, and
register AO must point to the buffer area containing the string. The
stack must have at least four bytes free. Register D7 may either point
to the end of the buffer, or be zero. On return, the long-word of data
will be loaded onto the top of the stack. Both the stack pointer and the
buffer pointer will be updated if no error occurs. The stack pointer
will be decremented by 4, and the buffer pointer will point to the byte
following the last valid character scanned.

This routine will not work on QDOS versions 1.03 and earlier.

176

RI.LEXEC Vector $11C (284)

Execute single arithmetic operation

Entry parameters: DO.B Operation code
D7 0
Al Pointer to arithmetic stack
A4 Pointer to base of load/store area
Return parameters: Al Updated stack pointer
Affected registers: Al
Additional errors: OV (-18) arithmetic overflow
Description

This is a SuperBASIC utility. All addresses must be relative to A6.
Also, it is advised that data register D7 be set to zero.

The arithmetic package operates on floating point numbers that exist on
a specified arithmetic stack. The package will operate on the floating
point number at the top of the stack (TOS), which is pointed to by
'0(A6,A1.L)", and if required for any one operation the package will
also operate on the next floating point number on the stack (NOS), which
is pointed to by '6(A6,Al.L)'. The format of floating point numbers is
discussed in Chapter 8.

The package will accept one of two types of operation code., First,
there are the true arithmetic operations. These have codes in the range
$02 to $30 inclusive:

Code Name Operation

02 RI.NINT TOS to nearest integer, Al=Al+4

04 RI.INT TOS to truncated integer, Al=Al+4

06 RI.NLINT TOS to nearest long integer, Al=A1+2
08 RI.FLOAT Integer TOS to floating point, Al=Al-4
OA RI.ADD Add TOS to NOS, Al1=Al1+6

0ocC RI.SUB Subtract TOS from NOS, Al=A1+6

OE RI.MULT Multiply TOS by NOS, Al=A1+6

10 RI.DIV Divide TOS into NOS, Al=A1+6

12 RI.ABS Positive value of TOS

14 RI.NEG Negate TOS

16 RI.DUP Duplicate TOS, Al=A1-6

18 RI.COS Cosine of TOS

1A RI.SIN Sine of TOS

1C RI.TAN Tangent of TOS

1E RI.COT Cotangent of TOS

20 RI.ASIN Arcsine of TOS

177

22 RI.ACOS Arccosine of TOS

24 RI.ATAN Arctangent of TOS

26 RI.ACOT Arccotangent of TOS

28 RI.SQRT Square root of TOS

2A RI.LN Natural logarithm of TOS

2C RI.LOG LOG10 of TOS

2E RI.EXP Exponential of TOS

30 RI.POWFP NOS to power of TOS, Al=Al+6

Some of these operations are seen to affect the stack. Remember that
stacks grow downwards. A few examples will clarify the situation. First,
let us look at RI.COS (code $18). This does not affect the stack pointer
(Al). The floating point number on the top of the stack is taken as the
argument for the cosine operation, and the resultant cosine is placed on
the top of the stack. A floating point number is removed, and a floating
point number is put back, so the stack pointer remains unmoved, Second,
let us look at RI.NINT (code $02). This will take the floating point
number from the top of the stack and convert it to the nearest integer.
This integer result is then placed on the stack. Floating point numbers
are six bytes long, but integers are only two bytes long, therefore the
stack pointer is incremented by 4 (i.e., four less bytes will now be
required on the stack), By looking at the effect on the stack pointer
(A1), you should now be able to deduce what is happening to the stack
for each of the operations listed,

The second type of operation code is a negative code in the range $FF to
$31 (dinterpreted as the range $FFFF to $FF31 inclusive). These codes
indicate a 1load operation (i.e., from memory to stack) if the least
significant bit of the code is zero, or they indicate a store operation
(i.e., from stack to memory) if the least significant bit of the code is
set. The memory address used for the load or store is given by:

A6.L + A4.L + ((opcode AND $FE) OR $FF00)
Only floating point values may be transferred. A load operation will
cause the stack pointer Al to be decremented by 6 (creating a new TOS).

A save operation will cause the stack pointer Al to be incremented by 6
(NOS will become new TOS).

178

— ——————— . S ———

RI.LEXECB Vector $11E (286)

Execute list of arithmetic operations

Entry parameters: D7 0

Al Pointer to arithmetic stack

A3 Pointer to operation 1list

A4 Pointer to base of variable area
Return parameters: Al Updated stack pointer

Affected registers: Al

Additional errors: OV (-18) arithmetic overflow

Description

This is a SuperBASIC utility. All addresses must be relative to A6.
Also, it is advised that data register D7 be set to zero,

This routine enables a list of operations to be carried out by the
arithmetic package. Any one operation may be as defined under RI.EXEC
(vector $11C). The byte list of operation codes are pointed to by
register A3 on entry to the routine, and the list must be terminated by
a zero byte,

1479

