
2J000000C1
C1000000
0000000

DEBUGGING

TESTING

DOCUMENTATION

ElEIMIKOM=
INOINIIMMMM

1=1MIVIIIMM

MACHINE CODE/6809 CODE

 

COOING

MAINTENANCE
Design pounts
Observing the rules of good
structure is difficult in machine
code programming.
Developing machine code
programs according to the rules
of good design is not difficult,
however, and pays extra
dividends in clarity of design
and debugging time saved

In the course so far, we have concentrated
on looking at the 6809's instruction set and
seeing how a few of these instructions can be
put together to form simple routines.
However, writing larger, more ambitious
programs is a far more complex task. We
consider some techniques to give structure
to larger Assembly language programs.

We have talked a lot in the course about the
benefits of proper program design, modular
construction and structured programming in the
context of high-level languages. The difficulties of
programming, and the benefits of good technique,
are greatly magnified at the lower level. In
Assembly language, there are usually no
convenient control structures, such as BASIC'S

WHILE . . WEND and IF. . . THEN . . ELSE, to
enforce at least some sort of structure on the code.
There are also no convenient notations, no data-
typing of variables, and, to make it worse, you can
expect an Assembly language program to be
between six and ten times the size of a high-level
program — in terms of the number of instructions.
Above all, it is far easier to make errors, and these
may have disastrous consequences — it is possible
to wipe out all the data on a disk with an error in a
single byte. To help make 6809 Assembly
language programming less daunting, we consider
here the most productive way to approach it.

There's nothing particularly new about
structured programming or software engineering:
experienced programmers have always known
that forethought and clarity of approach were the
ground rules for a successful programming style.
What makes it seem new and original is the fact
that the world of microcomputing has been largely
amateur and hobbyist, but it is now becoming both
more professional and more appreciative of the
professional virtures. Nothing makes this point
more clearly or memorably than your first attempt
at debugging an undocumented, unstructured,
hand-assembled machine code program that you
created months ago and put aside. Good design
and working methods mean good programming.

STAGES IN PROGRAM DESIGN
• Problem Specification: In this stage, the
Assembly language programmer must pay
particular attention to the specification of input
and output. Often peripheral devices are being
controlled directly — especially the keyboard and
screen — so the actual signals used must be
considered. There may be timing constraints as
well. You may not have any convenient routines

available that convert the string of bytes that come
in or go out into the form in which the program
reads the data — for example, converting a string
of ASCII characters into a decimal number in
binary form. It is important, therefore, to specify
not only the form in which the data arises but also
the form in which it is required by the rest of the
program.
• Program Design: We must now consider the
processes that will turn t1 e program's specified
input into its specified output. These should be
grouped where possible into logically self-
contained modules, along with the data that each
process requires. There are two main techniques
for 'decomposing' a program into modules:
bottom-up, where you collect a set of what would
appear to be useful modules in the context of the
program and then try to fit them together; and top-
down, where the program is successively
decomposed into smaller and smaller units,
concentrating on the function of each unit rather
than how it is to be achieved, until the process
cannot usefully be continued. Only at that point
do you start considering how each module can be
assembled into code.

Bottom-up design has the great advantage of
using library modules, which are easy to put
together, and the end result is likely to be more
efficient in memory usage. The disadvantages are
that the program as a whole is likely to prove more
difficult to debug and test, and will not be so
comprehensible. Top-down design leads to better
structured programs, and each stage in the process
can be tested separately by means of 'stubs', which
are short routines that take the place of as yet
unwritten modules by simply accepting input and
providing output in the correct form without doing
any processing. The disadvantages are that the
programs will tend to use more memory and the
routines developed are unlikely to have any
immediate use elsewhere.

Within each module the data requirements,
data structures and algorithms must be specified.
A flowchart is useful at this level for representing
algorithms, but many people find it much easier to
work in a loose kind of high-level language called a
pseudo-code. PASCAL is usually used as the basis
for this pseudo-code, but there is no reason why
BASIC cannot be used. This enables us to design
algorithms and data in a way that is familiar to us,
and confines the lower-level work to the relatively
simple task of translating the algorithm from
pseudo-code into Assembly language. This is
much easier than trying to design and code in
Assembly language at the same time.
• Coding: If the routines have been well designed

738 THE HOME COMPUTER ADVANCED COURSE


