
your fingertips, and you can RUN it, LIST it, or EDIT
it immediately.

The interpreter is easy to use, but not very
sophisticated: every time you type RUN, the
interpreter has to find your BASIC program in
memory and translate and execute it line by line. If
your program contains this loop:

400 LET N=0

500 PRINT N

600 LET N=N+1

700 IF N<100 THEN GOTO 500

the interpreter has to translate and execute lines
500 to 700 a hundred times, as if it had never
encountered them before.

Compilers are different. They're expensive,
difficult to write, and occupy and use a lot of
memory. They are almost always disk-based
software, so the user needs an expensive system.

What they offer is flexibility, power and speed;
faced with the four lines of BASIC above, a compiler
would translate them all once, then execute that
code a hundred times.

This allows quite a saving in time — but at a
price. Suppose you have a BASIC compiler and you
want to enter and run a BASIC program.

First you load and run the File Creation
Program (called the Editor), which allows you to
type in the program and save it to disk as a `source
file'.

Files must be named so that you can find them
once you've created them (just like files in a real
filing cabinet), so the Editor asks you to name the
source file. File names often consist of two parts:
the first is a label, any name you choose — say
MYPROG — and the second part is usually a three-
letter code indicating the nature of the file
contents; this code is the `extension'. A BASIC file
might have the code BAS as its extension. Your
source file is now on disk under the name
MYPROG.BAS. Now, typing:

COMPILE MYPROG.BAS

will cause the computer to LOAD and RUN the BASIC

compiler on a BASIC source file called MYPROG.
BAS.

You wait a few seconds, depending on the
length of your program while the compiler
translates your program into an `object file', which
it saves on disk under the name M v PR 0 G.0 BJ— the
OBJ extension indicating that this is the object file,
a machine code translation of a source file.

II!

oIIgftwa re

Alternative Translation
Computers 'think' in machine code; programmers prefer to write in a
high level language such as Basic. Compilers and interpreters offer
different methods of translation between them

When computers were first developed they didn't
have keyboards. Program instructions had to be
entered one step at a time by setting each of eight
switches to `up' or 'down', to represent a single
operation. These patterns of `up' and `down' were
examples of machine code.

It was logical to replace the switches by a
typewriter keyboard, and replace the patterns of
switch settings by real English words. The result
was the 'high-level' language such as BASIC,

replacing the low-level machine codes.
As processors, however, computers did not

change, but continued to work on the original
patterns of switches (and still do), so programmers
had to develop programs written in the original
low-level notation to translate these high-level
programs into patterns that the processors could
work on. These low-level programs came to he
called interpreters or compilers, according to their
method of translation.

In computing (as elsewhere), any gain in power
or speed has to he paid for — in money, time or
freedom of action, So it is with interpreters and
compilers. Together they provide all the program
translation facilities that a programmer needs.
Interpreters are strong in some areas and
compilers in others, but each pays for its
advantages with compensating disadvantages.

Interpreters, usually built into the home
computer, are the cheap way of translating high-
level language programs into something a
computer can understand. They don't use up
much memory — leaving more space for your
programs.

Micros costing less than about £400 almost
invariably feature a BASIC interpreter: you type in a
BASIC program, type RUN, and either the program
works, or it stops with an error message from the
system — something like:

SYNTAX ERROR ON LINE 123

So you type LIST, find the error, correct it, type
RUN, and it either works or stops again, and so on.
Note that some of the more sophisticated BASIC

interpreters actually check for syntax errors as
each line is entered.

You may have done this sort of thing hundreds
of times without having given a thought to the
interpreter. Its chief virtue is precisely that it is an
invisible device that allows you to work on your
program without ever bothering about where it is
in memory or how to execute it — the program is at

184 l'l1E nOMEi COMPUTER COURSE


