are unlikely to arise but they often do so when
other problems are considered. There may be 20
perfectly good and equivalent ways of going
through a particular process but the user may well
insist on one and only one of these.

Getting this wrong makes the user immediately
dissatisfied with the program. The designer may
be tempted away from the user’s preferred
method by the greater efficiency of other
methods, but any advantage is quickly lost if the
user won't use the program! Discovering the
user’s procedures can be very helpful when it
comes to designing calculations. Why invent a
formula for calculating wing-loadings, for
example, if you can simply ask the model maker
how he does it?

With all this information noted down, the job
of translating the specification into a program can
begin. A useful approach to take is to design the
user-program dialogue first, then the data files
and then the processes that control it all. The
word ‘dialogue’ is taken to mean the two-way
communication of information that goes on
between the user and the program. This does not
simply consist of the input of model aircraft
details and their subsequent display but also
includes every prompt, message and menu that
the program produces and every input, command
or selection that the user enters. It is also
important to fix the style of dialogue at this stage.
For the aircraft program a choice between menu
and command-driven interactions might be
appropriate. The decisions taken here will have a
considerable effect on the structure of the overall
program. The contents and format of the
dialogue must be considered in detail, but the
reward for this effort is that all the data
manipulated by the program should now be
specified. This means that the storage space
required for error messages and prompts can be
calculated and, most importantly, the files can
now be designed.

For the model aircraft program, where files will
contain large blocks of text and will be very
lengthy, splitting the file up onto several tapes so
that each can be searched more quickly may be
the best solution. If it warrants the effort, the data
may be compressed by a coding algorithm before
it is written to tape, and then decoded on reading.

By this time, the necessary functions will be
apparent. There will be routines to allow the data
text to be added and edited, to file the newly
input text (these should update any indexes used
by the system), to accept component names, to
search for and display descriptions, etc. All these
must be presented as options to the user, and they
must all be able to deal with invalid data.

At this stage it is advisable for the user to make
a careful check on the design to ensure that it
performs as it should. If all is well, the program
can now be coded. Of course, this is easier said
than done, and the act of turning the design into
an efficient working program may well reveal
further problems.

What The Programmer Thought The Designer Meant

What The User Really Wanted

STEVE CROSS

Describe, Define, Design

If the typical software
development team of user,
designer and programmer had
set out to solve the problem of
maoving heavy loads around
gardens, this is what they
might have produced. Bad
communication — between
expert and non-expert, and
amongst experts — is still a
major problem facing all design
teams

THE HOME COMPUTER ADVANCED COURSE 375



