
0 Basic Programming

Expanding Files ^II
Having established an overall structure, we now continue our
programming project with a look at file handling

The address book program that we have been
developing in recent instalments of the Basic
Programming course is actually a type of simple
database, and as such involves the concept of

`files'. The word is used in a number of related, but
slightly different, ways. We shall sta rt by discussing
these in a little more detail so that we can
subsequently use the word with more precision.

In computer programming, a `file' can be
thought of in much the same way as a file in a filing
cabinet. It is a collection of related pieces of
information stored together. Computers store files
on magnetic tapes or disks, Each `file' of
information is given a unique name so that the
computer can gain access to it whenever
necessary. The information on a cassette tape or a
floppy disk may be a program, or it may be `data'
used by a program. Taking the computerised
address book as an example, the information
needed consists of two separate parts: the program

itself, and the data that the program works on. The
program is the set of instructions that allows the
computer (and the user) to manipulate and work
on the data.

The data used by the program is the set of
records containing the information you would
expect to find in an address book — names,
addresses and so on. It also includes certain types
of data not normally available to the user. This is
the `housekeeping' data used by the program to
help it work. Examples of this type of data might
include: ` flags'; information relating to the current
size of the database (i.e. the number of records in
it); whether or not a sort has been conducted since
a new record was last inse rted; or possibly an
indication of how many times a particular record
has been accessed or printed out. The reason why
data such as this — and the data comp rising the
records — needs to be treated separately from the
program will become apparent as soon as we t ry to
implement the program.

In earlier parts of the Basic Programming
course we have used the READ and DATA statements
as ways of putting data to work within a program.
This is suitable only if the data is not subject to
change, such as the number of days in a month. If
the data is liable to change, the program can
prompt for it on the screen, and INPUT, IN KEYS or
other methods can be used to convey the data to
the program. An example of the approp riate use
of this form of data input might be a numbers
guessing game, in which part of the program might
take the form of:

PRINT GUESS THE NUMBER"
INPUT N
IF N <> COMPNUM THEN ...

The data in the address book program, however, is
subject to considerable modification. In theory, all
the records could be stored within the program
and read into appropriate arrays using READ and
DATA statements. But then all the data comprising
the records would have to be entered as part of the
program. Whenever changes were made — names
and addresses added or removed, for example -
considerable alterations would need to be made to
the program itself. At the very least, this would
involve printing out the program, checking to see
where the changes were needed, writing new
segments of the program and then typing them in.
The biggest problem, however, would be that the
new program segments would not be complete
program modules that could be independently
tested — the changes would be scattered
haphazardly throughout the program. The only
way of knowing that the modi fied program
worked properly would be to run it and see.

Fortunately, none of this is necessary because
data can be stored independently of the program.
This is done by creating data files on the cassette or
disk. These files are collections of records treated
in much the same way as the data in a DATA
statement. The program is able to `open' one or
more of these files, read the data from it (usua lly
into an array) and then `close' the file. If an
alteration to the data is needed, the program opens
the appropriate file, reads in the data, modifies it,
and then writes the modified data back to the file.

With disk-based computer systems, locating a
particular file and reading from it or w riting to it is
quite fast — the location of the file takes only a
fraction of a second and the read or write
operations usually take a few seconds at most. A
cassette-based computer system, on the other
hand, may be quite a lot slower and may involve
the user in rewinding the tape and waiting for the
tape to play through until the right file has been
found. Another advantage of using disks is that it
is possible to have more than one file `open' at a
time, whereas this is not practical with cassette-
based systems.

Files, then, are collections of data stored on a
bulk storage medium that are available to be used
by one or more programs. A word processing
program, for example, might want access to the
same set of names and addresses for `personalised'
automatic letter writing.

316 THE HOME COMPUTER COURSE


