Uniform System

Libraries of subroutines are
useless without a uniform
documentation system
accompanying them. Thisis
especially true for cassette
users — inspecting the
contents of an undocumented
cassette by loading and listing
each program is a thankless
fask

LENDING LIBR ARY

It is extremely useful to develop techniques
that make more efficient use of the time and
effort spent in programming. We discuss
one such method — creating libraries of
routines that can be merged into programs
— and list the sort of details that must be
taken into account when programmers
share the task of coding.

Following the structured design methods that we
have already described in this course may seem
like a long-winded approach — but it does, in fact,
save time (not only in the coding but especially in
the debugging of a program). This is because
programs that are-created at the keyboard tend to
have unnecessarily complicated structures and
algorithms, which means that they take longer to
write, are more prone to error and, because they
are more difficult to follow, take much more effort
to test and debug. Planning the program in
advance simplifies the structure and the
algorithms and thus leads to fewer coding errors
and easier testing and debugging.

Most importantly, designing ahead saves the
programmer from writing a control or file
structure that is later found to be inadequate
(perhaps not enough space in a field in the file has
been allowed for). Problems like this, which are
fundamental to the way the program works, can
lead to major portions of it needing to be

r

rewritten.

Those with a ‘proper’ typewriter-style
keyboard may like to invest some time in learning
to touch-type. Apart from this, though, there is
little that may be done to increase the speed at
which program lines are entered at the keyboard.
However, the process of coding programs may be
greatly speeded up in several ways. The first is the
simplest: invent, adopt and use a number of
‘conventions’ when coding. Such measures
include: using particular types of name for local
variables to differentiate them from main program
variables; beginning each subroutine at lines
ending in 000; ending each subroutine with
RETURN on a line of its own; starting each type of
subroutine in a particular block of lines (file-
handling routines between 9000 and 9999,
utilities at 50000 onwards, and so on).

The benefits of using these conventions are
numerous: you don’t have to hunt for the menu
routines because you know that they are always in
the same place; you don’t have to worry about
whether you have used the same variable name in
the main program and in a subroutine — because
its name will indicate it is a local variable.

PROGRAM LIBRARIES

Such coding techniques are also useful when
libraries of programs are created. A well-
organised library of subroutines can save as much
as half of the coding time on a large program. The

566 THE HOME COMPUTER ADVANCED COURSE

MIKE CLOWES




