
and gives no clue as to what variables are
involved. It's good practice to keep a variable
table, which shows you all the variables used in
the program and what they're for. This can lead
you to standardise your use of variables (such as,
always using certain single letter variables as
loop counters), and stops you using the same
variable for different purposes. Similarly, it's
good practice to store constant values in

Pest Control
This statement will never
be executed, as the 0010
comrrand skips over it

100 6010 200:XE="THAT'S ALL FOLKS"

These two lines are in the
wrong orcer. Ling 100
should have: 0010 190

120 1 = 1 2; K- 1984

K is suppcsed to contain a
constant, jut this

140 FOR K=1 TO LT statementwilleliminateit

Because the quotes are
missing from here, the
NEXT will not teexecited 160 PRINT'WHO NEEDS STRJCTURE 7:N$;NEXT

180 RESTORE + This should read: RETURN

140 FOR L = 1 TO I

Syntax Error: the colon':'
should be a semi•colan';'

200 INPUT'ENTER YOUR NAME" :N4

220 INPUT' ENTER YOUR AGE';L-

This will cause big troeble.-1 240 GOSUB 100
It should probably reac: — The quotation marks are
GOSUB 140 missing

260 PRINT IF Y0U'RE";LTt'NOU"

This will rasult it some
meaningless number,

2$0 Pk1NT'YOU WERE BORI' IN";K-LT
becauseKhasbeen
changed in value since
li ne 120

300 YR$=K-LT 9
Syntax Error: this should be

The close bracket is 4 YR-K-LT
misplaced, causing the 320 LY=INT(YR)/4*4
calculation to fail. This
should road: INT (YR/4)'4

340 IF LY=YR THEN :F INT(LY/100>*t00-LY THEN 30T0 370

There is no line 370! This should be;"
0010 420 means

3a0 PRINT YR'LAS A LEAP YEAR":GOTO 420 jumpinToutofthe
FOR... NEXT loop

340 PRINT "YR WAS NOT A LEAP YEAR"

420 PRINT X$

XS has not been initialised.
So this statement will do 440

$TEP
Syn:ax Error: this should be

nothing a STOP

400 NEXT -4 This may need the name
of the loop variable: i.e.
NEXT L

o Software

Subversive Elements
With careful planning and a step-
by-step approach, the time taken
to de-bug a program can be
dramatically reduced

As you become more skilled at writing
programs, you will also tend to become more
accomplished at `de-bugging' them. The
syntactical mistakes and errors in logic, which
even the most experienced computer
programmers can make, become less frequent
and less problematic as your experience
increases. Here are some hints to help you avoid
programming errors and become more efficient
at de-bugging your code.

The first place to begin is at the precise point
where a program begins — in your head! If the
concept of a program is badly thought out at the
beginning, then it is sure to be infested with bugs
when it is written.

It is a far better idea to begin writing a program
by first stating the problem as clearly as possible
to yourself or someone else. Then divide the
problem into logically complete parts — Input,
Output, Algorithms, Data Structures, Processes,
etc. — and consider each of those parts as a
separate problem. If necessary, break down each
of these problems into its component problems,
and so on, until the original problem is a
structured collection of sub-problems, each of
which is easy for you to program. A formal
approach, such as using a pseudo-language or a
flowchart, is essential in the design stage as a way
of keeping track of, and preserving, the program
structure as a whole. You must try to stay away
from the keyboard until you can honestly say
that you know how to program every part of the
problem This is called the top-down approach
to programming, and the method can
dramatically cut your de-bugging time.

Splitting problems into sol vable tasks will lead
you to write programs that are really collections
of subroutines or procedures linked by a
skeleton main program. This makes finding bugs
easier, and it enables you to build a library of
bug-free subroutines for use in later programs.
The alternative is called `re-inventing the wheel':
every time you write a program that sorts data,
for example, you re-solve the problem of how to
write a sort routine, and probably rewrite the
same old bugs, as well! It is much easier to write
and debug it once, save it, and recall it whenever
you need it thereafter.

As far as BASIC allows, always try to use
appropriate variable names, even if they have to
be abbreviated. NET=GROSS—TAX, for example,
explains itself; and NT=GR—TX isn't ' a bad
substitute; but N=G—T is extremely ambiguous,

432 THE HOME COMPUTER COURSE

