
Reverse names
Sort names
Print names

Look at the above list and check that it will work.
Can you see anything wrong with it? Are there any
flaws in the logic? If not, you are ready to go on to
the next stage of refinement.

The stages we arrived at in Step 2 are small
enough and simple enough to be written
separately as small sub-programs. Sub-programs
are called subroutines in BASIC. Let's give the
subroutines names to make them easier to identify.
Subroutine 1, to find out the number of names to
be input, can be called FINDNUM. Subroutine 2, to
enter the names, can be called ENTER. Subroutine
3, to reverse the names, can be called REVERSE.
Subroutine 4, to sort the names, can be called
SORT. Finally, Subroutine 5, to print the names can
be called PRINTNAMES.

Step 3.1 FINDNUM
Prompt the user to input required number
Get the required number N
Use N to set up string array
Step 3.2 ENTER
If number of names is less than N,
prompt user to input another name
Add name to string array
Step 3.3 REVERSE
Find length of string (name)
Find `space' in string
Put characters in string up to `space'
into temporary string variable
Put characters in string from `space' to
end into another temporary variable
Add comma space to end of variable
Assign second followed by first
temporary variables to original string
Step 3.4 SORT
Compare first item in array with next item
If first item is bigger than next one
(i.e. higher in the alphabet), swap
Compare second item with third
Swap, if necessary
Repeat until all pairs are compared
Go back to beginning of array and
repeat comparison of pairs until no swaps
have taken place

Note: This sort routine is exactly the same as the
one used in the previous part of the Basic
Programming course. The `swap' part will be dealt
with as a subroutine called from within the SORT
subroutine.

© Basic Programming

Organise Your Program
We sort a program using built-in functions to rearrange information

This week's program illustrates how relatively
complex programs can be broken down into
simple sub-programs or subroutines that can be
written and tested separately.

Apart from the advantage of being separately
testable, the use of subroutines allows the
development of the program to follow a logical
progression. There are many approaches to
writing a program in BASIC. One of the commonest
is `trial and error': you sit down at the computer
and start entering lines of BASIC without having
thought out carefully what is required to make the
program work. This method leads to badly
structured programs that will often not work the
first time. If the structure of the program is not
clear, it is not easy to find the mistakes or `bugs'.

A much better approach is to sit down with a
notebook and work out the structure of the
program first, in steps of ever-increasing
refinement, until a correct and working program
can be written. A flow diagram will also help (see
page 104). Let's see how this is done.

Problem: Write a program that will input a
number of names, the forename followed by
surname. Now reverse the order of each name so
that the surname comes first, followed by a
comma and a space, and by the forename. It will
then sort the names into alphabetical order and
print them out.

For example, if the names BILL JONES and FRED
ASHTON were entered (in that order), the program
would print out:

ASHTON, FRED
JONES, BILL

Before even attempting to write a program to do
this, first write down the desired input and output
in the most general terms:

Step I
Input names in random order, first name first
Output names in alphabetical order, surnames
first

This simply clarifies what we want to be done. This
is an essential first step to a properly organised
program. The next step is to refine the stages in the
first step and make sure that the program still
works. Do not, at this stage, get into too much
detail. Simply write down in a little more detail, the
stages involved:

Step 2
Find out number of names to be input
Enter names

134 THE, HOME COMPUTER COURSE


