
PROGRAMMING PROJECTS/ADVENTURE GAME
	 T_

numbers of the locations lying to the north, east,
south and west of the current location. In order to
determine which exits are possible, the program
first splits the eight-digit string into the four
numbers that describe which location lies in each
direction.
2300 REM ***s DESCRIBE EXITS S/R ****
2310 EXEX(P)
2326 NRVAL(LEFT$(EX$,2))
2330 EAVAL(MID$(EX$.3.2))
2340 S0=VAL(MID$(EX$,5.2))
2350 LEVAL(RIGHT(EX$,2))

If there is no exit in a given direction, the value
assigned is zero - and this is a great help with the
description of the exits. A preliminary check must
be made to see if any exits are possible before
starting to construct the sentence 'There are exits
tothe...'. This can be done by performing a logical
OR on all four direction variables, and this will only
produce a zero result if all four direction variables
are zero. If this is not the case, then the routine
continues to test each direction variable in turn. If
the variable is non-zero then the corresponding
direction is added to the sentence.
2335 IF(MA OR EA OR SO OR WE)0 THEN RETURN
2360 PRINTSNSEXITS ARE TO THE
2370 IF MA (>0 THEN 5$=SN*NORTH
2380 IF EA <>0 THEN SN$3N$-'EAST
2,190 IF SO <>0 THEN SN$=SN$+"SOUTH
2400 IF WE <>0 THEN SN$.S*L.EST
2410 GOSUB 5560:REM FORMAT
2415 PRINT
2420 RETURN

Now that we have developed routines that
describe each location, we can develop procedures
that will allow the player to do things within the
world we have created. In a future instalment of
the project, we shall be considering more detailed
algorithms that analyse instructions. For now, we
will deal with the movement instructions the
player can issue by simply entering a one word
direction command, such as 'NORTH' or
'SOUTH'. If such an instruction is passed to a
movement subroutine as the variable NN$, then
the movement routine is as follows:
3500 REM **** MOVE S/R ****
3518 	=1:REM SET MOVE FLAG
3520 OR$LEFT$($, 1)
3530 IF DR$(>NANOOR$< >"EANODR$< >'SANOOR$< >W
THEN 6OT03590

3540 IF OR$N'AND MA<>0 THEN P=NR:RETURN
3550 IF DR$=EANO EA<>8 THEN P=EA:RETURN
3560 IF OR$-SANO SO<>0 THEN PSORETURN
3570 IF OR$'WANQ LE<>0 THEN PLE:RETURN
3590 PRINT:PRINT"YOU CANT ';IS$
3585 tF=0:RETURN
3590 REM ** NOUN NOT DIRECTION **
3600 PRINT1J-AT IS ;M$;" ?"
3616 FF0:RETURN

This routine actually uses only the first letter of the
direction command passed to it. It begins by
checking that the command is, in fact, a direction.
If so, the direction specified in the command is
acted upon. After ensuring that there is an exit in
that direction, P - the variable that keeps track of
the player's position - is changed to the value of
NR, EA, SO or WE.

Before we can use the subroutines that we have
developed here, however, we need to tie them all
together to form a repeating loop. The flowchart

814 THE HOME COMPUTER ADVANCED COURSE

shows the logical structure of this main calling
loop. Although this is not the final structure of the
main program loop it serves to demonstrate the
aspects of the program covered so far. To use the
subroutines given here, insert the following lines,
which form a part of the main loop.
200 GOSU86000:REM READ ARRAY DATA
210 pINT(RNO(TI)*I01):REM START POINT
230 REM **** MAIN LOOP STARTS H.RE ****
240 NF0:REM MOVE FLAG
245 PRINT
250 GOSUB2000:REM DESCRIBE POSITION
255 GOSUB2300:REM DESCRIBE EXITS
260 PRINT: INPUT INSTRUCTIONS; 15$

Also include the following lines in the main calling
loop:

270 NNIS:GOSUB 3500:REM MOVE
280 GOTO 230:REM RESTART MAIN LOOP

START

Read array data

Set initial value
of P

Describe
location P

Describe exits
from P

Input direction

Alter value of P

