should always be done for local variables to
prevent ‘side effects’ from the use of the same
variable elsewhere in the program.

When the program is first run, various types of
initialisation will take place and data will be
loaded from disk or tape and transferred to string
variables. The CHOOSE menu will then be
presented. If the user chooses option 6 (to add a
record to the file), the value of variable CHOIGE
returned will be 6, and this will call the sub-
program ADDREC. ADDREC will assume that SIZE
has already had a value assigned to it and so it can
start prompting for inputs (note: this also assumes
that INITIALISE has already correctly DIMensioned
the necessary arrays).

Adding a new record also means that the file is
now, potentially at least, out of order. Since a sort
may take some time, it may not be necessary to
sort the records after each addition has been made
— that is a decision we shall defer for the moment.
Instead, we will set a flag to indicate that a new
record has been added.

We are now in a position to start making a
tentative list of possible arrays, variables and flags

that may be needed by the program.
ARRAYS
NAMFLDS (name field)
MODFLDS (modified name field)
TWNFLDS (town field)
CNTFLDS (county field)
TELFLDS (telephone number field)
NDXFLDS (index field)
VARIABLES
SIZE (current size of file)

CURR (index of current record)

FLAGS

RADD (new record added)

SORT (sorted since record modification)

SAVE (save executed since record
modification)

RMOD (modification made since last save)

It is likely that in the course of developing the
program a few more arrays will be needed.
Certainly more variables will be needed. As for
the flags, it is apparent that although others will be
necessary, the four given above may not all be
required. There will be no need either to save or
sort the file (assuming it is already saved and
sorted) unless a modification has taken place, so
RMOD s possibly the only flag really needed. But if
we do decide to use all four flags, the
INITIALISATION sub-program should set them all to
their appropriate values. As further practice in
top-down program refinement, let’s see how easy
itis to code *ADDREC™.

1 4 (EXECUTE) 6 (ADDREC)

BEGIN
Locate current size of file
Prompt for inputs
Assign inputs to ends of arrays
Set RMOCD flag

END

Basic Programming

11 4 (EXECUTE) 6 (ADDREC)
BEGIN
(size of file is SIZE)
(prompt for inputs)
Clear screen
Print prompt message for first array(SIZE)
Input data to array(SIZE)
(prompt and input for all arrays)
SetRMOD to 1
END

All this is straightforward and does not involve
loops or other complicated structures. The next
step can be direct coding into Basic. The only
points to note are that SIZE is a variable set during
the execution of INITIALISE and does not need to
be coded as part of this section.

111 4 (EXECUTE) 6 (ADDREC) BASIC CODE

CLS: REM OR USE PRINT CHRS(24) ETC TO CLEAR
SCREEN

INPUT “ENTER NAME";NAMFLDS (SIZE)

INPUT “ENTER STREET";STRFLDS(SIZE)

INPUT “ENTER TOWN", TWNFLDS(SIZE)

INPUT "ENTER COUNTY";CNTFLDS(SIZE)

INPUT “ENTER TELEPHONE NUMBER";
TELFLDS(SIZE)

LET RMOD=1

LET NDXFLD$=STRS(SIZE)

GOSUB *MODNAME®

RETURN

The third to last line sets the NDXFLDS field to the
value of SIZE (converted into a string by STRS), so
that it can act as an index at a later stage. The
subroutine “MODNAME*, called just before the end
of the program, is none other than the program
described in detail on page 254. A few slight
changes will be needed to that program, but these
are just details, This subroutine has the function of
taking the ordinary (fuzzy) name input and
converting it into a standard form. The output
from this subroutine will be an element (SIZE) in
an array called MODFLDS. All name searches and
sorts can now be conducted on the elements in
MODFLDS, and since the element will have the
same index as the other fields in the record, it will
be easy to display the name and address as they
were originally entered. In other words, the search
will be made on MODFLDS but the display will
come from NAMFLDS.

That’s about all that'’s involved in adding a new
record to the file, although we have not made
allowances for any error checking, or provision
for what would happen if there is no more space
left in the array. Since all our programs are being
written in modular form, modifications and
improvements such as these can easily be made
later without having to rewrite the whole
program.

The sub-programs MODREC and DELREC (to
modify and delete records respectively) are fairly
similar to ADDREC, except that before they can be
executed we have to locate the record we want to
change. Consequently, both of these sub-

THE HOME COMPUTER COURSE 337

