
6809 CODE/MACHINE CODE

means 'load the accumulator with the contents of
the memory location whose address is five bytes
higher than the present contents of the location
counter'.

ASSEMBLER DIRECTIVES
An assembler will normally accept a number of
directives or pseudo-ops, which are used in the
program like ordinary op-codes. We have already
used two of them (see page 538):

CRFCB13

(Fix Constant Byte) reserves a single byte at the
current location counter address, and gives it the
value of the operand — here, the location whose
address is represented by the symbol CR is
initialised with 13.

MEMTOP FOB$7FFF

(Fix Double Byte) does the same for a two-byte
(16-bit) value. Memory space can be reserved in
blocks without fixing the value of its contents by
using the RMB pseudo-op, as in this example:

TABLE1RMB7

TABLE2FCB$F6

which reserves seven bytes for a table of values
whose first byte has the address represented by the
label TABLE1. In practice, this means that if TABLE1
represents the address $C104, say, then TABLE2 will
represent an address seven bytes higher — that is,
SC10B.

An entire character string can be placed in
memory, like this:

ERRMSG FCC'ERROR

This initialises five bytes of memory with the
ASCII codes for E,R,R,0 and R. Consequently, it
is much easier to include user messages and
prompts in Assembly language programs.

An important pseudo-op is ORG (ORiGin),
which specifies a value for the location counter,
and is used at the start of a block of program to
instruct the assembler where in memory to begin
locating the program when it is translated into
machine code. You should always start programs
with an ORG statement, though some assemblers
may supply a default value if you don't. It is
permissible, and sometimes desirable, to have
more than one ORG statement in a program. An
ORG directive does not take a label or an operand.

Perhaps the only statement that you might want
to put before the ORG is EQU (EQUals or EQUate),
since it specifies variable symbols and does not
refer to the location counter. For example:

RESETEQU$F100

means that the symbol RESET is defined as
representing the value $F100. RESET is thus
shorthand for a number, whereas a label placed at
the start of a statement line represents the address
where data or machine code is stored.

Appropriately, the last directive we need
consider is END, which is placed at the end of the

source code as a terminator for the assembler. Like
ORG, it takes neither a label nor an operand.

6809 ADDRESSING MODES
A measure of any Assembly language's power is its
addressing modes — that is, the number of ways
that the operand can be interpreted. The 6809
processor supports many such modes. The sample
instructions that we have seen so far have all used
either direct or extended mode, meaning that the
value or label in the operand field is the address of
the memory location that contains the data.

Direct addressing means specifying only a
single byte address for the instruction operand.
This is treated by the processor as the lo-byte of the
full two-byte operand address, and it takes as the
hi-byte of the address the contents of the direct
page register, an eight-bit CPU register
addressable by the program. The advantage of this
mode is flexibility and generality: a subroutine, for
example, can be written using direct addressing,
and, therefore, not refer explicitly to any particular
area of memory. Specifying the direct page register
contents before calling the routine would 'point' it
wherever the data lay in memory.

Extended addressing means specifying a two-
byte address as the instruction operand. This
instruction will then always refer to that particular
byte of memory, and so is an inflexible piece of
code. The assembler recognises direct and
extended modes by the nature of the operand.

Another commonly-used mode is immediate,
where the actual data is contained in the operand
field itself. This mode is indicated by prefixing the
operand with a #, the hash symbol. For example:

ORG $1000start address of the machine
code is $1000

NUM1 FOB WEEinitialises location NUM1 with
SFFFF

LOU NUM1loads $FFFF, the contents of
NUM1, into the D register

LOD #NUNloads $1000, the actual (or
immediate) value of NUM1, into
the D register

Notice that the label N U M1 represents the address
$1000. You might expect that the ORG instruction
would reside at address $1000, and that the
following instruction (and, therefore, its label —
NU M1) would have a higher address. Remember,
however, that ORG is an instruction to the
assembler program about translating the
Assembly language program, and not a part of the
program itself. It does not, therefore, take up any
memory space, so NUM1 takes the value $1000
because that is the value of the location counter
when NUM1 is first encountered by the assembler.
You should also notice that LDD NUM1 loads the
contents of location N U M1 ($FFFF as specified by
the FDB directive) into the D accumulator, whereas
LDD #NUM1 loads the value of NUM1 itself (the
address $1000 of the label).

THE HOME COMPUTER ADVANCED COURSE 559

