

PIECES OF THE PUZZLE
The most efficient way to create programs in
any language is to use 'modular structuring'.
Some languages, such as PASCAL encourage
this approach, while BASIC users need to
discipline themselves to adopt the
technique. We show you how your
programming will be greatly enhanced using
modules of code as your basic components.

A module is a piece of code that performs a
particular function. The points of entry and exit,
known as the module's' 'interfaces', must be
precisely defined, and the processes that occur
between these interfaces should be entirely
independent of the rest of the program. Once a
module has been written, it can be treated as a
'black box'. Data may pass in and out of the
module's interfaces, but what goes on inside can be
left to itself.

Modules can be joined together to build up a
program without the writer having to worry about
how they perform their tasks. A stock of modules
can be built up by a programmer to be used when
needed, and programmers can pass modules on to
be used in another writer's programs. But in order
to take advantage of modular structured
programming, we need to take careful note of the
flow of control and the flow of data when we write
the modules.

To ensure that all your modules behave in the
same way with respect to the flow of control, a very
simple rule should be followed: all modules
should have a single entry point and a single exit.
What this means in practice is that the flow of
control within the module has to be carefully
designed so that it starts at one place and, no
matter how much it loops and branches, it reaches
the same exit by all possible routes.

Modules correspond to the algorithms we have
been looking at in previous instalments of the
course. 'Structured' languages, such as PASCAL,
allow the programmer to create subroutines that
may be called by name, and which use their own
variables. Such languages encourage a
programmer to enter or leave a routine (called a
'procedure') by single entry and exit points.

In BASIC, using the GOSUB . . . RETURN
combination, a subroutine can be called from the
main program and, after the subroutine has been
carried out, control will return to the line
immediately after the GOSUB command. However,
there is no restriction on which line the GOSUB
sends control to. Two different G OSU Bs may send
control to different lines of a subroutine with a
single RETURN, and the result might be completely

different in each case. Similarly, there is no
restriction on how many RETURN statements may
be used in a subroutine.

This means that the BASIC programmer must be
self-disciplined. You should start by making sure
that all GOSU Bs to the same subroutine point to the
same line number, and that every subroutine has
only one RETURN in it. It is best to get in the habit of
marking the first line of each subroutine with a
REM statement giving it a title, and use that line as
the entry point. Make the RETURN the last line of
the subroutine. This is not essential but it makes
things much clearer.

THE GOTO RULE
Extra care should be taken with the GOTO
command, which can play havoc with program
structure. The rule here is: only use a GOTO to send
control to a line within the same subroutine. This
avoids the potential danger of skipping over a
RETURN or passing control to the wrong RETURN.
There are times when it is necessary to leave a
routine without executing every line. In this case
you should GOTO the line with RETURN on it, and
there should be no problems.

Using GOTO within loops is even more
dangerous. If control jumps out of a loop, BASIC
cannot know this and assumes that the rest of the
program is the body of that loop! The safety rule is:
when in the body of a loop, never GOTO a line
outside the body of that loop. If a loop needs to be
terminated early, set the loop counter or test
variable to the terminal value and GOTO the test line
(the line with NEXT or WHILE in it). As with the
RETURN statement, put NEXT or WHILE on a line of
its own to make this easier. Keeping track of the
structure of a program is a lot simpler if GOTOs are
avoided as much as possible.

Branches are the most likely place for control to
go astray, so try not to allow any decisions to send
control out of a subroutine unless it is with a proper
call to another subroutine. Remember that each
subroutine has a single exit point, so make sure
that it is possible to follow the flow of control
through every branch to that point. Drawing a flow
chart for the routine makes this easy to check.
Setting a flaican often reduce the need for GOTOs
in routines involving loops and branches.

We can think of data passing in and out of
modules, just as we did for algorithms (see page
386). So that modules can be used independently
of each other, you must design them so that the
only influence they have on each other is through
the data that passes between them. The main
program passes data to a module and, when the
module has been executed, any result that has

454 THE HOME COMPUTER ADVANCED COURSE

