
M Basic PUIammig

Time And Motion
Sorting an array in Basic can be a time-consuming operation, but
will ultimately speed up our searches for specific records

0

So far we have developed most of the code needed
to create entries in the address book `database', but
have not yet tackled the necessary programming
for saving the entries on tape or disk. The only
major omission has been a suitable routine for the
creation of the MODFLDS field, as specified earlier
in the course.

The complete program to do this is given in this
instalment of the course. First, all characters are
converted to upper case (capital letters) in lines
10250 to 10330. Lines 10350 to 10370 then count
through the characters in the string and check each
one to see whether it is a space. The last space
encountered leaves the variable S set to the value
corresponding to its position in the string.

Lines 10400 to 10420 transfer characters, one
at a time, from the string of upper case characters
to CNAMS. Characters are transferred, until we get
to the last space, if they have an ASCII value of
more than 64. Any characters that fail this test are
ignored, so this process eliminates full stops
(ASCII 46), apostrophes (ASCII 39), spaces
(ASCII 32) and all other punctuation marks.
Lines 10450 to 10470 do the same for the
characters after the final space, transferring them
to SNAMS.

If NS contains only a single word, TREVANIAN,

for example, variable S will be 0 and all the
characters will be transferred to SNAM$. The
variable used for the forename has been called
CNAMS rather than FNAMS. CNAMS is used to
remind us of `Christian name', as variables starting
with the letters `FN' will confuse many BASICS into
thinking that a call to a user-defined function has
been made.

Lines 10490 and 10500 are needed to set the
string variables used in this routine to nulls before
they are used again. This is a point to watch out for
whenever structures of the type LET X$ = XS + Y$ are
used. Failure to `clear' the variables will result in
more and more unwanted characters
accumulating in them each time they are used.
Notice that CHOI is set to 0 in the ADDREC routine,
since we only want to make sure that the user adds
a record if there are none in the file (that is, the first
time the program is used).

Now that we have a way of adding as many new
records to the file as we want, we need a way of
saving the file on tape or disk. The simplest way
would be to write all the records to the data file
(ADBK.DAT in this version of the program) in the
order they happen to be in. The chief disadvantage
of this approach is seen when we need to search the

396 THE HOME COMPUTER COURSE

file for a particular record. If we cannot be sure
that all the records in the file are sorted

,

 in some
way, the only way to search for a record would be
to start at the beginning and examine each record
in turn to see if it matches the `key' of the search. If
the record you were searching for happened to be
the last one entered, every record in the database
would need to be examined before the one you
wanted was located. If the last record entered was
for a William Brown (i.e. MODFLD$(SIZE-

1)="BROWN WILLIAM"),a search routine should
anticipate the record to be somewhere near the
beginning of the file — if the records had been
sorted. Unfortunately, both sorting and searching
are very time-consuming activities; so it is a
question of determining your priority. We have
adopted the principle that an address book is
consulted far more often than it is added to (or
modified in some other way). This being so, it is
better to assume that searches will be far more
frequent than sorts, so we will always ensure that
the records are sorted before they are stored in the
data file after the program has been used.

With this in mind, a variable called RMOD is

created to use as a flag. It can have one of two
values: 0 or 1. It is initially set to 0 to indicate that
no record has been modified during the current
execution of the program. Any operation that
does modify the file in any way — such as adding a
new record — sets RMOD to 1. Operations that
`need to know' if the file has been modified will
check the value of RMOD before proceeding. For
example, EXPROG, the routine that saves the file
and exits from the program, checks RMOD in line
11050. If RMOD=0, no sorting and saving is needed
as the data file on tape or disk is assumed to be in a
fully sorted and unmodified form. Other routines,
such as those that search through the file for a
particular record, will also need to check RMOD. If
RMOD is 0, the search (or other operation) can.
proceed. If RMOD is 1, the routine will first have to
call the sort routine. After the whole file has been
sorted, the sort routine will then reset RMOD to 0.

Our sorting routine, called *SRTREC* in the
program listing, resets RMOD to 0 in line 11320
after all the records have been sorted. Before going
on to look at *EXPROG* (the routine that saves the
file on tape or disk and then ENDS), a few words
about *SRTREC* are called for. *SRTREC* is a form
of a simple sorting technique called a `bubble sort'
(see page 286). There are many ways of sorting
data and the bubble sort is one of the simplest and
slowest. A good case could be made for a more


