
X) instruction, which does an unsigned addition of
the contents of B to the contents of X. However,
this is not as generally useful as LEA.

SUBROUTINES
A subroutine is a self-contained section of code
that is called from the niain program (or another
subroutine) to perform a specific task. Once that
job has been done, control is automatically
transferred back to the calling program at the
instruction immediately following the original
subroutine call. There are three main reasons for
using subroutines:
1)To save writing the same piece of code more
than once. It is more convenient to write an often
used piece of code as a subroutine and call this
when it is required.
2) So that a library of common routines can be
built up, and then used in a number of different
programs.
3) To break a program down into smaller, more
manageable sections.
The most significant thing to remember about
using subroutines in Assembly language is that
both the calling program and the subroutine will
be using the same registers. One of the most
common errors in machine code programming
occurs when, having stored a value in one of the
registers, a program calls a subroutine and on its
return finds that the contents of that register have
been altered by the subroutine. Therefore, it is vital
to know, and to document, the registers that a
subroutine uses. It is particularly essential to save
the contents of the registers being used when a
subroutine is called, and restore those contents
when control returns from the subroutine.

Later in the course we will look at how the
stacks are used both as a convenient way of saving
such data, and as a means of passing values and
addresses (parameters) to the subroutine. For the
moment, however, we shall assume that the
subroutine uses the same data as the calling
program (global variables) and any other values
that it needs will actually be in the registers. A
subroutine call is made by means of one of these
instructions:
• BSR: Branch to SubRoutine
• JSR: Jump to SubRoutine
The BSR command causes a relative branch — it
finds the subroutine at a certain offset from the
current value of the program counter. This
instruction is normally used for subroutines
written as part of the program.

The JSR instruction calls a subroutine at a
certain specified address. This would be used for a

4U:4j= LMACHINE CODE/6809 CODE

MATCH-MAKING
—

We have already considered the use of
indexed addressing on the 6809 processor.
Here we examine how this is used to
perform simple arithmetic on values in the
index registers and discuss the use of
subroutines in a string-matching program.—
In the previous instalment of the course we took
our first look at indexed addressing on the 6809
processor. In indexed mode addressing, the
effective address specified by, for example,
OFFSET,X is formed as the sum of the offset (which
can be a constant or the contents of a memory
location) and the current value held in the index
register specified (in this case, the X register). We
saw that in some common situations the offset may
be zero, in which case we can write ,X (although 0,X
would also work). In special cases, one of the
accumulators A, B or D can be used for the offset
(e.g. B,X). And we took a look at how one of the
most common uses of indexing — stepping
through a table of values — can be made easier by
the use of auto-increment and auto-decrement
mode. This mode increments a register by one or
two after the instruction has been carried out (,X+
and ,X++), or decrements the register by one or two
before the instruction is carried out (,-Y and ,- -Y).

Now we can briefly look at how indexed
addressing can be used to perform some simple
arithmetic on values in the index registers using the
LEA (Load Effective Address) instruction. The
normal arithmetic instructions will not work on
the values in registers other than the accumulators.
Although it is possible to transfer the contents of
the index register into the D accumulator, perform
the arithmetic and then transfer the result back,
this is an awkward and slow procedure. The LEA
instruction (which can be applied to the X, Y, Sand
U registers only) will perform any necessary
address calculations and then load the effective
address value. Normally the contents of an
effective address would be loaded, so this is a
useful alternative.

Let's take a look at an example. The instruction:

LEAX -1,X
will calculate the effective address as the sum of —1
and the current contents of the X register. This
address is then loaded back into X, effectively
decrementing the value in that register. This is not
the only use of this instruction; it could be used, for
example, to carry out an address calculation once
and save the result, rather than perform that same
calculation a number of times.

It is also possible to do a certain amount of
arithmetic on the X register using the ABX (Add B to

618 THE HOME COMPUTER ADVANCED COURSE


