
contents onto the stack, and the effect of the
instructions between SUBR3 and SUBR4 is to
restore those contents to the registers. The
substantive instructions in the subroutine are the
two starting at SU BR2, but the second of these is
ineffective since the subsequent instructions
completely change the state of the accumulator.

Notice that the Z80 PUSH and POP instructions
can take any of the register pairs as an operand,
but the 6502 can operate on only the
accumulator (PHA and PLA) and the processor
status register (PH P and PLP). Hence the need for
the register-accumulator transfers (TXA, TAX, TYA,
TAY) in the 6502 version. Notice also that we have
made a deliberate mistake in the Z80 version in
not 'popping' all of the registers in the reverse
order to which they were 'pushed'. It illustrates
the care needed in stack operations, but also
demonstrates that you can push the stack from
one register and then pop that value off the stack
back into a different register — a laborious but
sometimes convenient way of doing data

transfers between registers.
The functions and uses of the CPU registers

are the subjects of the next instalment, in which
we conclude our general examination of the
Assembly language instruction set. We also begin
the study of machine code arithmetic.

Exercises

1)Rewrite the second routine given in the answers to
the previous exercises so that the message at LABL1
is stored back at LABL1, but in reverse order, thus:

LABL1 EGASSEM A SI SIHT

Use the stack for this reversal.

2)Develop this routine so that the words of the
message remain in their original order, but the
characters of each word are reversed, thus:

LABL1 SINT SI A EGASSEM

Answers To Exercises On Page 237

1)This subroutine stores the numbers SOF to $00 in
descending order in the block of $10 bytes reserved by
the DS pseudo-op at LABL1.

6502Z80

ORIGINORG $7000ORIGINORG $C000
LABL1DS$10LABL1DS$10
LABL2OW$7100LABL2OW$C100

OFFSTEQU SOF
BEGINLOY #$FFBEGINLOIX,LABL1

LOX#$10LOp,OFFST
LOOPOINYLOOPOLO(IX+0),B

DEXINCIX
TXAENDLPODJNZ LOOPO
STA LABL1,YLO(IX+0),B

RET ENDLPOBNE LOOPO
RTS

The differences in approach and ins ructions between
the Z80 and 6502 are revealing. The 6502 uses the Y
register as an index to the address LABL1, and the X
register as a loop counter and source of the data to be
stored. Notice that the X register is decremented two
instructions before the BNE test at ENDLPO, but because
TXA (Transfer X contents to the Accumulator) and the
STA do not affect the processor status register, the test
works on the effects of decrementing X.

The Z80 version uses IX indirect addressing mode to
hold the storage address, and uses the B register as the
counter and source of data. At ENDLPO in the Z80
version we see DJNZ LOOPO, meaning 'decrement
register B, and jump relative to LOOPO if the result is
non-zero'. This instruction is almost an Assembly
language FOR...NEXT structure, and certainly makes
writing Z80 loops easy and convenient.

2)This routine copies the message stored at LABL1 to
the block starting at the address stored at LABL2. The
value SOD (the ASCII code for Return or Enter) is stored
at the end of the message as a terminator.

6502Z80

ORIGINORG 87000ORIGINORG $C000
LABL1DB'THIS IS A

MESSAGE'
LABL1DB'THIS IS A

MESSAGE'
TERMN8DBSODTERMN8DBSOD
LABL2OW$7100LABL2DW$C100
CREQU $0DCREQU SOD
ZPLQEQU SFB
BEGINLDA LABL2BEGINLDIX,LABL1

STA ZPLOLDIY,(LABLZ)
LDA,(IX+0) LDA LABL2+1LOOPO

STA ZPLO+1LDA __(IY+0)
LDY $FFINCIX

LOOPOINYINCIY
LDALABL1,YCPCR
STA(ZPLO),YENDLPOJRNZ,LOOPO

-
ENDLPO

CMP CRRET
BNE LOOPO
RTS

The 6502 version uses the Y register as an index to the
indirect address ZPLO, in the post-indexed indirect
mode. This mode is possible only with the Y register,
and requires a zero page operand address — hence the
initialisation of ZPLO and ZPLO+1 with the address
stored at LABL2. The operating system in 6502
machines uses most of the zero page locations, but
locations SFB to $FF on the Commodore 64, and $70 to
$8F on the BBC Micro, are unused, so ZPLO is set to one
of these locations. The Z80 version uses IX in indexed
mode, and IY in indexed indirect mode.

Both routines use a 'compare the accumulator'
instruction — CMP CR (6502) and CP CR (Z80) — in
which the operand is subtracted from the accumulator
contents, thus affecting the processor status register
(PSR) flags. The accumulator contents are then
restored, while the PSR shows the results of the
comparison. When the accumulator contains $OD (the
message terminator), the result of the comparison will
be that the zero flag is set. Thus the ENDLPO test will fail
and control will pass to the return instruction.

THE HOME COMPUTER ADVANCED COURSE 259

