Bubhle Sort

This diagram illustrates the
Bubble Sort for a reduced hand
of ning cards (T is the Ten carc).
The ordered part of the hand
grows from the right-hand end
with each pass. The 1 and 2
underneath the hand of cards
indicates the two cards currently
being compared

Begin Sort
EZESSTSKEFBegnPas-M
1

8293T5KET7

12
B923THKET

12
8032T5KET
1%
BIIT25KET
12
8 3TA2KET
12
893THK267
12
8903T5KB27
12
893T5K672 EndPass1
GBTS5KET 32 EndPass?2
GT8K67532 EndPass3d
TOKBT765 32 EndPass4d
TK987 6532 EndPasss
KT396876532 Endpassb
End Scrt
Insertion Sort

With the Insertion Sort, the
ordered part of the list grows
from the lefi-hand end. Cards
are moved directly to their
correct position in the list as
they are inspected

Begin Sort
2BY3TEKET
21
BR293TEKET

21
9823TEKB7
21

832T5K67

Order Of Play

The ability to sort information into order is essential to most
programs, and there are many ways of doing it

Sorting is one of the most widely used computer
operations, but it is a task at which computers are,
by their own standards, highly inefficient.
According to operational research, between 30
and 40 per cent of all computing time is spent in
sorting, and if you add the associated tasks of
merging data and searching for specific items, then
the figure probably rises above 50 per cent.

Programmers have probably spent as much
time inventing sort algorithms (general methods
of solving problems) as computers have spent
doing the actual sorting. Advanced sorting
methods are extremely difficult to analyse, butit is
quite easy to understand the simplest methods
computers use to sort data with the aid of the
example of sorting a pack of playing cards.

Lay 13 cards of the same suit on a table.
Arrange them in a line, in no particular order, but
the Ace and the Two should not be at the right-
hand end of the line. The cards are to be sorted into
descending order (King, Queen, Jack...Ace),
starting at the left. This is an almost trivial task for
us, and requires so little thought that itis difficult to
describe exactly how we might do it. If, however,
you were to specify that only one card can be
moved at a time, that no card can be placed on top
of another, and that the cards are to cover as little
of the table as possible, the task becomes a lot less
trivial, and an efficient method is hard to
determine. In this analogy the cards are pieces of
data, the maximum surface covered corresponds
to the computer memory required, and you are the
program. How do you solve the problem?

1) Put a coin below the leftmost card toact as a
position marker and to remind you where you are
in the sort. Compare the marked card with the card
to its right. Are they in descending order? If they
are not, swap their positions, leaving the coin
where it is, and obeying the rule of only moving
one card at a time and not placing cards on top of
each other. Notice what you have to do to swap
them.

2) When the two cards are in order, move the
coin one place to the right and repeat Step 1. You
are now in @ loop that will end once you move the
coin into the rightmost position. Reaching this
position is called making a ‘pass’ through the
cards.

3) At the end of the first pass look at the cards.
The Ace, which is the lowest card in the suit, has
found its way to the rightmost end of the line, and
sois in its correct place. If you make a further pass
through the cards, as detailed in Steps 1 and 2, the

286 THE HOME COMPUTER COURSE

Two card will be moved to its correct place. This is
repeated, through pass after pass, until the whole
suit is in descending order.

You may have noticed several drawbacks to this
method. Itis very tedious; it is not economical, as
simply exchanging the positions of two cards
requires three different operations; and, above all,
many of the comparisons made between different
cards are unnecessary. For example, after one pass
the Ace is in its correct place, so there’s no point
moving the coin into position 13 (where no
comparison is possible, anyway). On the second
pass, because the card on the right is in its correct
place, there was no need to move the pointer to
position 12. In general, each pass will end one
place to the left of the endpoint of the previous
pass.

Knowing where to stop is another problem, A
computer will continue comparing cards
indefinitely unless it is told to stop. The only sure
rule is: stop after a pass with no swaps. In other
words, if you've gone through the data without
altering its order, then it must be in order.

The method of sorting we have investigated is
called the ‘Bubble Sort’, Its advantages include
simple programming techniques, little use of extra
memory and reasonable efficiency with small
amounts of partially ordered data. These are the
criteria by which a sort algorithm must be judged,
although when the data to be sorted is extensive,
speed may have to be sacrificed for economy of
memory simply because computer memory may
not accommodate both the raw data and a sorted
copy. For this reason, we'll ignore algorithms that
require taking data from one array and moving it
to the sorted position in a second array. The
second method of simple sorting is based more
directly on the way that we would sort cards.

1) Lay the shuffled cards out again and place a
penny coin beneath the second card from the left.
Whichever card the penny is beneath at the
beginning of each pass, we will call the ‘penny
card’.

2) Push the penny card out of theline, leaving a
gap, and place a twopenny coin beneath the card’s
immediate left. Call this card the twopenny card.

3) Compare the penny card with the twopenny
card. If they're in order, then push the penny card
back into place and skip to Step 4. If they're not in
order, then push the twopenny card into the gap
and move the twopenny coin one place to the left
to mark a new twopenny card (if the twopenny
card is at the extreme left, this will not apply, so



