
Rocket PM
Before a player object can be
defined. it must first to drawn
out and the decimal values for
each row of pixels calculated
Player Strip

128 64 32 16 8 4 2 1

16

16

16

40

56

40

56

40

56

56

186

186

186

25,

18f

14E

Decimal Value

10 SID=54272
20 POKESID+23,0
30 POKESID+24,15
40 POKESID+5,40
50 POKESID+6,201
60 FOR N=1T05
70 READ FH,FL,D
80 POKESID+1,FH:

POKESID,FL:
REM'PLAY
NOTE*

90 POKESID+4,33
100 FORI=1TO300*

D:NEXT I
110 POKESID+4,32
120 FORI=1TO100:

NEXTI
130 NEXT N
140 FORI=1T02000:

NEXTI
150 POKESID+24,0
160 REM'*FHFLD**
170 DATA 57,172.1
180 DATA 64,188,1
190 DATA51,97,1
200 DATA 25,177,1
210 DATA38,126,2
220 END

out frequencies lower than a specified one; and
variable resonance can be applied to all the above
filters to emphasise the frequencies around the
cut-off points. Envelope filtering is a special case:
it has a different effect from the others in that
digitised ADSR values set for envelope 3 can be
read from the SID chip and applied to a signal in
such a way that the harmonic structure changes
throughout the course of a note. It works like a
variable filter.

These sophisticated features enable you to build
highly complex sounds into interesting effects
and convincing emulations of conventional
instruments. The daunting aspect of SID is that
CBM BASIC V2, the dialect supplied with the 64,
provides no commands dedicated to sound at all.
Control is exercised by PEEKing from and POKEing
into the 29 SID control registers. A lot of BASIC

code is therefore needed to generate even simple
effects, and in some cases BASIC isn't fast enough to
do full justice to the full range of SID's possibilities.

A full description of the SID control registers
would require more space than a complete issue of
THE HOME COMPUTER COURSE, but it is possible to
play notes with pleasing tones as shown in the
program on the left.

Although the program is 22 lines long, it plays
merely five notes of a simple tune on one
oscillator. Line 20 disconnects the filter from the
oscillators; line 30 sets the master volume at its
maximum; and lines 40 and 50 specify a piano-
like envelope. Line 80 sets the note frequency; 90
and 100 start and stop the ADSR cycle and select
a sawtooth wave for voice 1; and timing is
achieved with FOR. . NEXT loops in lines 100, 120
and 140.

Programming sound on the Commodore 64 in
BASIC is a major effort in terms of both learning and
writing code. Moreover, it can be a very frustrating
exercise, as the only way to discover if a more
complex set of BASIC statements will run in an
acceptable time is by trial and error. If you want
simpler methods of sound generation it is worth
investigating the many sound editing programs
that are commercially available. These are usually
written in machine code and make the most of the
marvellous features of the Commodore 64.

its own 256 or 128 bytes of memory.
Each of the four players has a missile figure

associated with it that is two bits wide. To create
players and missiles it is necessary to POKE the bit
patterns that define their shape into a certain area
of memory. The area of RAM used can be chosen
by the programmer but the computer must be
informed by setting a pointer to the beginning of
the area.

If the programmer elects to use single-pixel
vertical resolution then twice as much memory is
required than for two-pixel vertical resolution.
The following program designs player 0. in two-
pixel vertical resolution as a space ship:

10 REM *`* DEFINEA PLAYER ***
20 P=PEEK(1.06) -8: REM SETS P TO 2K BELOW

TOP OF RAM
30 POKE 54279,P:REM SETS POINTER TO PM

AREA
40 BASE = 256*P:REM SETS PM AREA BASE

ADDRESS
50 FOR I = BASE+512 TO BASE+640
60 POKE I,0:REM CLEAR PLAYER 0 AREA
70 NEXTI
80 FOR I = BASE+512+50 TO BASE+530+50
90 READ A:POKE I,A:REM DEFINE FIGURE

103 NEXTI
110 DATA 16,16,16,56,40,56,40,56,40
120 DATA 56,56,186,186 146,186,254,186,146

Each player figure has several registers associated
with it. These registers control colour, horizontal
position and size. The last of these enables the

programmer to increase the width of a player by a
factor of two or four. Further registers control
player-to-background priority. Missiles take on
the colour of their parent player but missile size
can be changed independently. For games
applications a series of registers is set aside to
detect on-screen collisions between players,
missiles and background. However, there is no
vertical position register for missiles or players.
Vertical movement must be achieved by moving
the contents of each location that holds the bit
patterns for the figure up through the area of
memory set aside for that player. This is a fairly
straightforward task in Assembly language but
would be relatively slow in BASIC. It is a good idea
to try to make characters that move vertically as
short and stubby as possible.

Player-Missile graphics considerably extend the
Atari's graphics potential, although they are not as
versatile or as easy to use as the Commodore 64's
sprites. Here is a continuation of the program
started earlier, to colour the space ship and move it
from left to right across the screen.

130 POKE 559.46:REM ENABLE PM 2 LINE
DISPLAY

140 POKE 53277,3:REM ENABLE PM DISPLAY
150 POKE 704.88:REM COLOUR PLAYER 0 PINK
160 GRAPHICS 0
170 SETCOLOUR 2,8,2:REM SET BACKGROUND TO

DARK BLUE
180 FOR I=OTO 320
190 POKE 53248,I:REM SET HORIZONTAL

POSITION
200 NEXTI
210 END

THE HOME COMPUTER COURSE 473

