
ROGRAMMING TECHNIQUES/AENU2D COMMAND SYSTEM

CHOICE OPTIONS

Program flow will now follow a set pattern. For
each menu along the route, the menu logic routine
passes a set of user prompts to a routine that puts
them into 'slots' in a menu 'frame'. The slots will
probably contain a screen header message that
displays a title and any other necessary
information about the menu, a looter' that
explains how to make the choice (with sufficient
space for the user's response), and the menu
options themselves. In general, the most effective
menu layout has up to eight options displayed in a
column, with the response code (number, letter,
mnemonic, etc.) at the left of each item.

The menu routine calls an input routine,
perhaps passing to it the conditions that must be
specified for a legal input, and accepts in return the
user's response. It then interprets this response
(typically a single keypress) and either passes
control to the next menu or calls the appropriate
application routine if it is the last menu in the
chain. Once the routine has been executed, the
menu from which it was called might be
redisplayed, or control could pass to some other
part of the program (the root menu, perhaps).

Menus require a lot of text for headers, footers
and prompts, but much of this will be repeated for
each menu 'frame'. The explanation of how to
choose a menu option (the 'help' command), an
option offering an exit to the root menu, and other
recurring choices may all be required by several
different menus. If this is the case, space may be
saved and the logic made clearer if all prompts are
held in a string array (or on a random access disk
file), from which they may be called by their index
number. Design the menu display routine to
accept references to this array and to display the
appropriate headers, footers, prompts, etc.

A command-driven system is one that has a
range of commands available to the user at any
stage in the program. Each command goes straight
to a subroutine that performs the required
function. This system must be designed to inspect
all input to ascertain whether it is data or a
program command. The difference is usually
signalled by the user pressing a particular key
before each command input. The Control key is
often used for this purpose. A word processor, for
example, might accept the word 'save' as just one
more word of text, but interpret it as a storage
command if the Control key was pressed before
the word was typed.

In a command-driven system, the 'tree' is very
shallow and broad, and a single routine, acting as
the control program, is used to direct the user to
the required subroutine. This 'command
interpreter' has four main tasks. The first is simply

In any complex program there will be points
at which the user will need to branch to one
of a number of available options. The menu
system lays out the list of choices at certain
specified stages for the user to select from; a
command system allows the user to choose
from a range of options at any time. We
consider both techniques.

Menus may be simple lists of numbered items or
they may be screens full of elaborate icons, but the
principle behind their use is the same. A menu is
used when the program reaches a multi-way
branch in its logic; the user is asked to choose
which route to take from a list of available options
displayed on the screen. Menu-based programs
tend to be tree structures: the user enters the tree at
the 'root' and is guided by the menu options
towards one of the 'leaves', where the information
or function is to be found.

The major advantage of this approach is that the
user needs little or no knowledge of the program
structure because the route is well `signposted' all
the way. However, more experienced users find
the job of navigating their way through a chain of
menus tedious for often-repeated tasks. Novices,
too, may have difficulty with the tree structure;
correcting a wrong decision involves working back
through all the menus to the point at which the
mistake was made, re-entering the correct option,
and then continuing from there. Prestel is a
particularly 'deep' structure of this type, and users
frequently encounter this problem. Menus need
not form a tree at all — they may be organised into
a network by using loops. However, this tends to
increase the risk of getting lost within the program
structure and so is not suitable for novice users.

Designing a menu system can be difficult,
although the actual programming is relatively easy.
The main problem is that the entire program must
be clearly specified before any code is written.
(This is good practice anyway, but is not always
straightforward.) Adding new functions at a late
stage can involve changing several menus earlier
in the program, and this may require major
restructuring. When the program is designed, all
menu logic should be included in a single routine
that calls the routines at the 'leaves' when these are
reached. The menu routine can thus be seen as a
more complex form of the normal control routine,
with all internal branching controlled by the user.
This keeps the design tidy, and serves to separate
the control logic from the functional parts of the
program, allowing each to be developed and
debugged independently.

556 THE HOME COMPUTER ADVANCED COURSE


