
THE HOME COMPUTER ADVANCED COURSE 813 

II 
	

ADVENTURE GAME/PROGRA11LNG PROJECTS 40 

ON LOCATION 
So far in our adventure game programming 
project, we have developed a map of the 
locations that form the basis of a game and 
written a utility routine that formats output 
to the screen. We are now in a position to 
design routines that describe locations 
within the game and allow the player to 
move between locations. 

The basic description of each location is held in the 
array LNSO (see page 767) and can be accessed 
simply by specifying the number of the location 
arrived at. In Haunted Forest, the position held by 
the player at any given time is stored in the variable 
P, and, therefore, the description of that location is 
stored in LN$(P). When the location data was first 
designed the description's final grammatical 
context was kept in mind; the description always 
being phrased in such a way that it could be 
prefixed by 'You are...'. For a given location, P, 
the description can be formatted and output to the 
utility developed in the last instalment, by 
combining 'You are' with the description held for 
that location in the array LN$O.  Line 2010 in the 
Haunted Forest listing shows this. 

In addition to the basic description of the 
location arrived at, the player will also want to 
know if any objects are present. The objects used 
in the game are stored - together with their initial 
positions in the inventory - in a two-dimensional 
array, IVS(,). For example, IVS(N,1) holds the 
description of the Nth object in the inventory, and 
IVS(N,2) holds its position. If we wish to determine 
whether or not there is an object at a particular 
location we must search through the inventory, 
checking each object's position against the number 
of the location that is being described. As there are 
only three objects in Haunted Forest and eight 
objects in Digitaya, a simple linear search using a 
FOR... NEXT loop can be implemented. 

Lines 2040-2080 show the search loop used in 
Haunted Forest. The second column of the 
inventory array is scanned for a match with the 
current location, P. When a match is found, then 
the corresponding description is added to the 
sentence that describes the objects. As more than 
one object may be present in any one location, we 
must allow for the construction of a sentence 
where a list of objects is given, each separated by a 
comma. By using SP$, initially as a null string, and 
later as a comma, we can insert the correct 
punctuation between each item. A flag, F, initially 
set to zero, is set to one to signal the fact that an 
object match has been found during the search. If 
the flag remains at zero at the end of the search,  

then no objects are present, and this fact can be 
output to the player - as in line 2090 of Haunted 
Forest. 
Z'O@ REM **s* DESCRIBE LOCATION **** 
2010 SN=YOU ARE ",LNs(p):GOSUSSSOO 

2020 SN$ YOU SEE 
2030 REM ** CHECK INVENTORY FOR OBJ ** 

2040 FBSF$"" 
2050 FOR I1 TO 3 
2060 IF VAL(IV$(I,2))<>P THEN 2080 
2070 SN*SN$+SP$*A "+IV$(I,1)FISP$ 
2080 NEXT I 
2090 IF F0 THEN SN$=SN$+NO OBJECTS 

2100 6OSU85500:REM FORMAT OUTPUT 
2110 RETURN 

The data containing details of the possible exits 
from each location is held in the array EX$O.  Each 
string value is made up of eight digits. By 
subdividing these eight digits into groups of two, 
we obtain - working from left to right - the 

A Room Wiffi AVIsw 
The details of the locations in 
our adventure game are held in 
three string arrays, which 
contain object names and 
whereabouts (V$), location exits 
(EX$) and descriptions (LNS). 
EXS (34), for exampie, might 
contain the eight-digit number 
33390027, showing that 
location 34 connects to 
locations 33,39 and 27 by its 
north, east and west exits 
respectively. LN$(34) contains 
'The Middle Of Memory', 
which describes location 34. 
V$(2,2) contains the number 
34, showing that IVS(2,1) - The 
Key - is in location 34. Given 
the current location number the 
program assembles this 
information into a description 


