Basic Programming

Assembly Lines

We can now bring together the sub-programs that will process our
computerised address book, and examine ways of making the

program more user-friendly

Although many details of the address book
program have yet to be finalised, the overall
structure should now be becoming clear. At this
point in the development of a program of any size
it is as well to draw a block diagram of the program
and to think through the flow of activities in the
program.

This is also the point at which the program
writer should think about the ‘human interface’
and ‘user image’ aspects of the program. These
important concepts and practices are often not
given the attention they deserve, even in
commercial software.

‘Human interface’, simply defined, means the
‘ergonomics’ of the software, or how easy it is to
use. ‘User image' is concerned with how the user
perceives the program being used. We shall
examine these concepts with regard to our
program as developed so far, and determine to
what extent we will be able to implement them.

The table shows the main blocks of the program
that have been considered so far. As a convention,
and simply to keep things tidy, we have used
names with six characters for procedures or
subroutines, seven characters (including §) for
string arrays, four characters for simple numeric
variables and five characters (including S) for
simple string variables that are global. Local
variables (in loops, for example) will usually be
single letters.

MAIN PROGRAM BLOCKS
CREARR (creates arrays and initialises
variables)
INITIL RDINFL (reads in file from tape or disk)
SETFLG [setsflags and modifies
variables)
GREETS (prints greeting message)
CHOOSE CHMENU (prints options menu)
INCHOI [assigns aption to CHCE)
FNDREC (locates and prints a record)
FNDNMS (locates names from partial
input)
FNDTWN {locates records for specific
town)
FNDINT (locates names from initials)
EXECUT LSTREC (listsall records)
ADDREC (adds a new record)
MODREC (modifies existing record)
DELREC (deletes arecord)
EXPROG (saves file and exits program)

' 354 THE HOME COMPUTER COURSE

Each of the major program blocks in the second
column needs to be further broken down into sub-
units, and the sub-units will need to be further
refined until we have enough detail to write the
actual code in Basic. The processes involved in this
form of ‘stepwise refinement’ have been illustrated
for many of the blocks in earlier parts of the Basic
Programming course.

Assuming that all or most of the program
modules have been worked out, coded into BASIC,
and individually tested, how can they be linked
together to form a complete program? The best
way to tackle this problem is to save each module
on tape or disk, giving it the same filename used in
the program development notes. Thus ADDREC
can be written and tested as far as possible, and
then saved under the filename ADDREC. Normally,
when a program is loaded from tape or disk, we
use the LOAD command, followed by the filename,
asin LOAD ‘ADDREC’. This has the effect, however,
of clearing everything in memory, so if we load
ADDREC and then subsequently load MODREC, the
whole of the ADDREC program will disappear.

Fortunately, there is a partial solution. The
MERGE command loads a program from tape or
disk without erasing any program already in
memory. But there is one important proviso. Ifany
of the program line numbers in the MERGEd
program are the same as line numbers in the
program already in memory, the new line numbers
will overwrite the old line numbers and cause
chaos. Versions of sasic with the RENUM
command can get round this by renumbering the
lines in a program module before they are saved,
so that when they are merged there will be no
conflict.

Unfortunately, many versions of Basic on home
computers do not have the RENUM command, and

therefore careful planning of the line numbers &

from the beginning will be necessary. When a full
chart of all the major program modules has been
worked out (as we have partially done in the
table), starting line numbers for each block can be
assigned. Parts of the program likely to have
extensive modifications or changes, such as the
main program or file-handling parts of the
program, should have increments of 50 or even
100 in order to leave plenty of room for additions.
Program modules less liable to modification, such
as the GREETS routine, can have line number
increments of 10. Putting lots of blank REMs in the
program not only makes the program easier to
read, but also allows additional statements or calls

