
MACHINE CODE /PAST CNF

arrived. The information that someone has turned
up for work is stored in the circuit.

That's almost exactly how information is stored
in computer memory: all information reduces to
the presence or absence of electricity in a circuit.
Naturally there's more to it than that, so let's
improve the management information system.
Suppose we have four separate switch/bulb
circuits (the four switches in a row at the door, and
the four bulbs in a corresponding row in the
office), so that closing the leftmost switch
illuminates the leftmost bulb, and so on. Now
imagine that every employee is told to close the
switches in a unique way, so that when Catherine
arrives she closes the first and second switches
and opens the third and fourth; Richard closes the
fourth switch and opens all the others; Bobby
closes the first and third and opens the second and
fourth; and so on for all the employees. The lights
in the office now show the Manager which of the
employees has turned up for work.

Suppose that the OFF position of each switch is
labelled 0, and the ON position is labelled 1:
therefore Catherine has to set the switches 1100
(first two switches ON, third and fourth OFF),
Richard has to make the pattern 0001 (fourth
switch ON, the others OFF) and Bobby has to set
1010 (first and third ON, the other two OFF). If
the Manager reads each light bulb as 1 if it's ON,
and 0 if its OFF, then both the employees and the
Manager will be speaking the same identification
language. `0001' means 'Richard' to both people.

How many unique patterns of switches are
there? Each switch can be in one of two positions,
and there are four switches, so there are
2X2X2X2=16 different patterns. Let's consider
all the possibilities:

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

Try as you like, you can't make any more patterns
than these, and there are 16 of them.

Notice how quickly we've moved from the
concrete picture of light bulbs in a room, to the
abstract matter of patterns of 1's and 0's. If we can
abstract a little further we can turn these patterns
into numbers.

Think about counting and writing down as you
count. You can count from nought to nine very
easily because each of those numbers has a unique
name and a symbol to represent it, But what do
you write down after nine? You have a name, ten,
for that number, but no separate symbol to
represent it. Therefore you must re-use some of
the other symbols: 10, 11, 12, and so on until 99,
when you run out of possibilities again, so the next
number has three columns (100). This seems
trivial, but you may remember how difficult it was
when you learned it at school: all that squared
paper with Hundreds Tens and Units written at
the top of each sum? You now know that the
number 152 means "1 in the Hundreds, 5 in the
Tens, 2 in the Units", or 100+50+2=152.
Counting works like this because we have ten

18 THE HOME COMPUTER ADVANCED COURSE

digits (0,1,2,3,.. .,9) which we arrange to
represent all possible numbers.

How does counting work, however, if there are
only two digits: 0 and 1? We can count to I easily,
but how can we represent the next number? We
have run out of unique digits, so we must re-use
what we have (just as we did when counting with
ten digits), and write the next number as 10. Now
we know that the next number is called `two', so in
this system 10 represents the number two. The
next number as we count is three, and we must
write that as 11. Then what? We've run out of two-
digit combinations, so the next number, four,
must be represented as 100; five must be 101, six
is 110, and seven is 111. Here, we are counting in
decimal numbers (nought, one, two, etc), but
we're writing these down in binary numbers
(0,1,10,11,100,101,...).

In the same way as a decimal number such as
152 means: (1X100)+(5x10)+(2x1), the binary
number 101 means: (1X4)+(0x2)+(1x1).
Instead of having hundreds, tens, and units
columns for our numbers, we must use columns
marked: fours, twos, and units. In a decimal
number the value of a digit is multiplied by ten for
every column it moves to the left; in a binary
number the value of a digit is multiplied by two
for every column it moves to the left.

So that's the binary system: just a different way
of representing numbers. If you know Roman
numerals you don't find it hard to accept that
there are VII dwarfs in Snow White; so why not
write 111 dwarfs? The actual number of dwarfs is
not changed by the way we represent it, but it is a
good idea to say the binary number as `binary one
one one', and to write it as `111 b' so that you don't
confuse it with a decimal representation.

Now we can return to our original analogy of
how the factory workers switch patterns, and
decide on a method of making these a little easier
to use. The most sensible thing to do is to treat
these patterns as four-digit binary numbers. This
means that Catherine's signal is 1100 binary,
which is 12 decimal. Richard's signal is 0001
binary (1 decimal), and Bobby's signal is 1010
binary (10 decimal). When the Manager looks at
a pattern of lights in the office, he or she can read
it as a binary number, convert it to its decimal
equivalent, and look down the list of employees to
see who that number corresponds to. Thus we can
say that information is stored in the current of
electricity, and the switches make it meaningful.

Our analogy has given a simple picture of how
information is represented in a computer: to the
computer it's just patterns of voltages (i.e. lights
are ON or OFF), but we humans find it easier to
consider those patterns as binary numbers. It's all
a matter of representation. If you now think of
1010 as the code meaning `Bobby', then you may
start to see how all of this relates to machine code
itself. In the next instalment of the Machine Code
course, we will look at how binary numbers are
used to represent information inside your home
computer.


