
9/MACHINE CODE

byte location, then store the carry flag as the hi-
byte of that location. There is no single
instruction for storing the carry flag, but the ADC
op-code was formulated with precisely this
operation in mind: ADC actually means `add the
instruction operand to the current contents of the
carry flag, then add that result to the contents of
the accumulator'. Addition is thus a two-stage
process, in the first of which the current state of
the carry flag is used, while in the second stage the
state of the carry flag is updated.

This means, then, that before beginning an
addition, we must consider the current state of
the carry flag, since it will be added into the
addition sum proper: hence the two unexplained
instructions in previous instalments, CLC and AND
A. The former, a 6502 instruction, means `clear
the carry flag', and does exactly that. The Z80
version, AND A, means `logically AND the
accumulator with itself', While not designed
.solely to reset the carry flag it does have that
effect and doesn't affect anything else, so is often
used as a Z80 equivalent of the 6502's CLC.

Having cleared the carry flag before starting an
addition, therefore, we must store its contents
afterwards. This is achieved by adding the
immediate value $00 to the hi-byte of the result.
This won't affect the byte if the carry flag is clear,
but will add 1 to it if the carry flag is set.

All of what we have said in this instalment
leads to the first method for single-byte
arithmetic:
1)Clear the carry flag
2) Load the accumulator with one number
3) Add in the second number
4)Store the contents of the accumulator in the lo-

byte of a two-byte location
5) Load the accumulator with the contents of the

hi-byte
6) Add in the immediate value $00
7)Store the contents of the accumulator in the hi-

byte

When this procedure is turned into Assembly
language we get:

COMMON TO BOTH PROCESSORS

L beI Directive Operand

BYTE1 ECU F----- ---_
YTE2 4U SFF

LOBYTE-_ ECU _ SA000
SA001

ORG SAO2O

Z3O 6502

Operand Operand

LD A.S00
Q. (1110 IE).A_.SIA_

ANO A

LOA #SOO
HIBYTE

CLC
A.8YTE1_- LD LOA #BYTE 1

#BYTE2 _.—..
TA . LOBYTE .._..

LDA HIBYTF _.
ADC $oO........

... STA HIBYTE

D._—___(L
LD_ 19.Y E.)._

ADC_ A S00
LD (HBYTE).A
REf RTS

Remember that the values given for LOBYTE,
HIBYTE and ORG are for example only — you must
choose values appropriate to the machine that
you use. Notice that the first two instructions of
the program load $00 into HIBYTE, so that it's not
corrupted by random data. We don't have to
dear LOBYTE in the same way because its starting
contents are overwritten with the to-byte of the
result.

It is worth remarking again about the
differences of approach between Z80 and 6502
Assembly language as seen in the example.
The 6502 code reads quite simply once you're
used to it — the mnemonics themselves and the
use of `#' to signal immediate data make the
meaning of each instruction clear. The Z80
version is less straightforward because the LD
mnemonic is used for all data transfers whether
into or out of the accumulator. Also, there is no
`#' symbol to signal immediate data, only the
absence of brackets around the operand indicate
this. Thus LD A,BYTE1 means `load the
accumulator with the immediate data BYTE1';
whereas LD A(HIBYTE) means `load the
accumulator from the address HIBYTE'. In the full
Assembly language listing there is no ambiguity
in the meaning of such instructions, since the hex
value of the op-code uniquely identifies the
instruction. This may seem to beg the question,
however — the op-code may be unique, but if
there is a choice of unique op-codes, how does
the assembler (or the person doing the assembly)
choose between them? The answer lies in the
Addressing Mode, which will be the topic of the
next instalment.

Finally, we should take note that the processor
status register contains other flags as well as the
carry flag, which we'll examine briefly now, and
return to in detail later in the course:

TB0 PSft S Z H PIY N C

Bit NLmber 7 6 5 4 3 2 1 0

MSB LSB

6502 PSR S V B 0 I Z C

B
Z30 6502

7 (S)-SIGN (S -SIGN 7

6 (Z)-ZERO (V)-OVERFLOW 6

5 unused Jnused 5

4 (H)-HALF-CARRY (B)-BREAK 4

3 unused (D —BD MODE 3

2 (P/V)—PARITY/OVERFLOW (I)-INTERRUPT 2

1 (N)-SUBTRACT (Z)-ZERO 1

0 (C)-CARRY (C)-CARRY

For our present purposes the important flags are
the carry, sign and zero flags. We have seen that
after an addition the carry flag holds the value of
the carry out of the eighth bit of the accumulator.
The sign flag is always a copy of the eighth bit (bit
7) of the accumulator, and the zero flag is set to 1
if the accumulator contents are zero, and reset to
0 if the contents are non-zero.

THE HOME COMPUTER ADVANCED COURSE 177

