
---...11111111.1.111•101

r-6-r
COMPUTER SCIENCE/LOGO

BUGS IN THE WORKS
Having covered turtle geometry in some
detail, the course moves on to look at Loco's
use of sprites. We start with a discussion of
the basic principles behind turtle sprites,
drawing our examples from Commodore
LOGO, and show how the language can use
sprites to create animation effects.

Using Lou°, sprites act in a similar way to turtles,
obeying all the commands that a turtle obeys.
Unlike turtles, however, we can define the shape
of a sprite ourselves — although these shapes do
not rotate on the screen as the sprite's heading
changes, in the way that a turtle does.

In Commodore Loco, the turtle is counted as
sprite number 0, and there are seven other sprites
— numbered 1 to 7. To begin with, sprite 0 is the
'current' sprite, and obeys all the sprite commands
entered. To make sprite 1 the current sprite, you
simply type in TELL 1. From then on, all sprite
commands will be obeyed by sprite 1 until a
different current sprite is specified.

After typing TELL 1, however, you won't see
anything on the screen. This is because all the
sprites, other than the turtle, begin as 'hidden'
objects and have their pens up. In order to see
sprite 1, and see where it moves, you have to type
ST, and a vague square will appear on the screen.
Experiment with this sprite grid, using the turtle
commands FD, BK, RT, LT, PD, PU, ST, HT, and soon.

If you move sprite 1 to the same position as
sprite 0 (the turtle) you will notice that it appears
to be behind the turtle. In general, lower
numbered sprites are shown 'in front of' higher
numbered sprites. This is useful for three-
dimensional effects.

There is a sprite editor on the Commodore
Loco utilities disk. Read this in by typing READ
"SPRED. To edit the shape of sprite 1, first make it
the current sprite with TELL 1 and then type EDSH.
The display will show a much enlarged view of the
sprite grid and we can now move the cursor
around the screen. Pressing the asterisk key (*) will
fill in a pixel, while pressing the space bar will
blank it out.

Having designed your sprite, press Control-C
to define the shape. If the sprite is not visible, try
entering ST. This same shape can now be given to
other sprites as well. SETSHAPE 1 will give the
current sprite the same definition as sprite 1.
Having defined a set of shapes, you can save the
sprites to a file with SAVESHAP ES "FILENAME, and
read them back with READSHAPES "FILENAME.

There is a well-known mathematical problem in
which four bugs are placed at the corners of a

square. They are all set off at the same speed and
each follows the bug to its right. The objective is to
trace their paths. We give a woo program here
that implements the problem using sprites.

The procedures that we give simply position a
copy of the same sprite at each corner of the
square, and then set them off following each other.
The bug shape is defined as sprite 3, and the others
are all given the same shape using SETSHAPE 3 in
the position procedure.

The heart of our solution lies in the FOLLOW
procedure. In this, X and Y are first set to the x and y
co-ordinates of the sprite that is being followed
(:B), and then the sprite that is doing the following
(:A) has its heading set towards this point. To do
this, We use the primitive TOWARDS. This takes two
inputs, which represent the co-ordinates of the
point to be headed towards, and outputs the
heading from the current sprite to that point.

ANIMATION
One interesting use of sprite graphics is in the
creation of animation effects. A series of sprite
shapes representing the same object is defined.
Each of these is slightly different from the one
before, and when they are run together they give
the effect of motion. Commodore woo gives three
shapes that are a crude attempt at a man running.
The following procedures set up the screen, and
then set the three shapes in motion.

TO RUNN

TELL 0

DRAW

PU

BIGX BIGY

SETH 90

RUNNING 2

END

TO RUNNING :SHAPE

FD 5

SETS HAPE :SHAPE

IF :SHAPE = 4 THEN MAKE "SHAPE 1

RUNNING :SHAPE + 1

END

Before running these procedures, read in the file
SPRITES from the utilities disk. This contains a
number of useful procedures including BIGX and
BIGY, which double the size of a sprite. SMALLX and
SMALLY are the reverse procedures: these are used
to return a sprite to its original size. Read in the
three sprites by typing READSHAPES "RUNNER, and
then run the procedures.

We also define four sprite shapes on the
following page, which we will use in a game in the
next instalment.

666 THE HOME COMPUTER ADVANCED COURSE

