
Most people teach themselves programming
by using the manual that comes with their
computer. This is a good enough way to get
started, but it often means you never learn to
write efficient programs nor discover the
tricks of the trade that make programming
easier. We introduce a series of articles
designed to give you insights into the
techniques used by good programmers.

Good programming is developed through
experimentation and experience. The novice
programmer, often solving problems through
enormous enthusiasm and sheer effort, is gradually
transformed into a technician with an awareness of
short-cuts and rule-of-thumb methods that achieve
the desired results. Eventually, the programmer will
develop the simple clarity and direct approach of
the expert. But there is no reason why the personal
progress of a home computer programmer cannot
be hastened by learning from the mistakes of others
who have taken the same path. The lessons are
there for the learning, and everyone's programming
can benefit from them. Our course begins with a
discussion of some of the more helpful hints that
can aid a beginner.

Programming is a problem-solving process, and
a great part of it should be carried out in the mind
and with a pencil and paper long before a line of
code is written. The stages in this process are well-
known: a clear comprehensive statement of the
problem in practical terms, followed by repeated
re-statement of the problem with increasing
precision, until it is formulated with as much detail
and accuracy as possible. This description nearly
always contains or implies the essential solution,
which must then be expounded in greater and more
practical detail so that it becomes a working
method. In programming, only the last stage should
involve coding, and that should be a
straightforward realisation of the preceding stages.
When the coding stage overlaps the real problem-
solving, poor solutions and bad code result.

Solutions are often known as algorithms,
processes of computation analysed in logical
stages. The efficiency of a program depends mainly
upon that of its algorithm, and this is judged in
terms of its 'completeness' and its 'correctness'.
These two commonsense qualities refer to the
program's theoretical and practical ability to cope
with the foreseeable range of input conditions, and
to the consistency of its internal logic. Needless to
say, it's much easier to recognise their absence than
to demonstrate their presence, but every program
must be subjected to this judgement, and the earlier

334 THE HOME COMPUTER ADVANCED COURSE

',eT.11
PROGRAMMING TECKNIQU ' ' ' , RODUCTION

TRICKS OF THE TRADE
in its development the better.

Solutions must be reliable, as well as complete
and correct. Not only must they handle their
prescribed range of problems, but they must also
deal predictably and safely with conditions outside
their range. This usually means having the ability to
recognise potential error conditions, and being able
to stop operating with all the data intact, as well as
displaying some useful status message. It is difficult
to judge whether code is sufficiently reliable, as a
program that isn't reliable is easier to recognise than
one that is. Experience leads to better judgement.

Making programs reliable and robust is a worthy
aim that nearly always conflicts directly with an
equally desirable goal — keeping them economical
Everything costs money, even if it's only the time
you spend writing programs for fun. There always
comes a moment when you have to decide between
continuing to work on a program that's nearly
'bombproof', and abandoning it to start a fresh
project. Even if your time is unlimited, the
computer's memory and operating speed are not.
It's quite possible to surround the central algorithm
with so much precautionary code and error-
trapping that protecting against crashes can take
more time than solving the original problem.

TESTING AND DEBUGGING
Solving analytical and logical problems in theory is
enormously important, but programs are meant to
perform a task. Once the first syntax and logical
errors have been dealt with it's time to begin testing.
This is so familiar an idea that it hardly seems to
merit statement, never mind emphasis. But it is, in
fact, a much misunderstood process. In anything
but trivial programs there are usually far too many
possible combinations of input conditions for
exhaustive trials, so tests must be devised to put as
much strain as possible on what are likely to be the
most vulnerable (and what are expected to be the
strongest) parts of the program. Generating
comprehensive test conditions is not a simple
matter and takes time and money. The professional
approach to testing is that there are no perfect
programs, only bad tests.

Successful tests reveal a program's inadequacies,
and should do so in a logical fashion so that
debugging takes as little time as possible. Like
testing, debugging is an essential process that
regularly fails to be achieved precisely because it
embodies the same human failings that make it
necessary in the first place. A program bug should
be approached as another problem to be solved,
exactly as described earlier — statement, analysis,
algorithm, testing — but it is most often treated as a
casual pest to be swatted, poisoned or crushed, with


